ATARI PROGRAMM

RXG 4003
Steckmodul

ASSEMBLER EDITOR

c 1983 Jegliche Rechte vorbehalten
ATARI ELEKTRONIK - Vertriebsges. mbH

ERROR CODES

ERROR
CODE ERROR CODE MESSAGE

Memory insufficient

Value error

Too many variables

String length error

Qut of data error

Number greater than 32767

Input statement error

Array or string DIM error

Argument stack overflow

Floating point overflow/
underflow error

12 Line not found

13 No matching FOR statement

14 line too long error

15 GOSUB or FOR line deleted

16 RETURN error

17 Garbage error

18 Invalid string character

=t
(S-S B T) B RO)

=

Note: The following are INPUT/OUTPUT er-
rors that result during the use of disk drives,
printers, or other accessory devices. Further in-
formation is provided with the auxiliary hard-
ware.

19 LOAD program too long
20 Device number larger
21 LOAD file error

128 BREAK abort

229 1OCEB

130 Nonexistent device

131 IOCB write only

132 Invalid command

133 Device or file not open

134 Bad IOCB number

135 = IOCB read only error

136 EOF

137 Truncated record

138 Device timeout

139 Device NAK

140 Serial bus

141 Cursor out of range

ERROR
CODE ERROR CODE MESSAGE

142
143
144
145
146
147
160
161
162
163
164
165
166
167
168
169
170
171

Serial bus data frame overrun

Serial bus data frame checksum error
Device done error

Read after write compare error
Function not implemented
Insufficient RAM

Drive number error

Too many OPEN files

Disk full

Unrecoverable system data /O error
File number mismatch

File name error

POINT data length error

File locked

Command invalid

Directory full

File not found

POINT invalid

For explanation of Error Messages see Appendix 1.

PREFACE

This manual assumes the user has read an intreductory book on assembly
language. It is not intended to teach assembly language. Suggested references
for assembly language beginners are 6502 Assembly Language Programming by
Lance Leventhal and Programming the 6502 by Rodney Zaks (see Appendix 8).

The user should also know how: to use the screen editing and control features of’
the ATARI® 400™ and ATARI 800™ Personal Computer Systems. These
features are the same as used in ATARI BASIC. Review the ATARI BASIC
Reference Manual if you are unsure of how to do screen editing.

This manual starts by showing the structure of statements in assembly
language. The manual then illustrates the different types of 6502 operands. The
Assembler Editor cartridge contains three separate programs:

e EDIT (Editor program) — Helps you put programming statements iti'a form
the Assembler (ASM) program understands. The EDIT progran‘l,“fets you use
a printer to print a listing 'of your program. Programs can'also be stored and
recalled using ENTER, LIST and SAVE, LOAD. The Assembler Editor allows
automatic numbering, renumbering, delete, find and replace.

o ASM (Assembler program) — Takes the program statements you. create in
the EDIT step and converts to machine code:

e DEBUGGER — Helps you trace through the program steps by running the
program a step at a time while displaying the contents of important internal
6502 registers. The DEBUGGER program also contains programming
routines which allow you te display registers, change register contents,
display memory, change memory contents, move memory, Verify memory,
list memory with disassembly, assemble one instruction into memory, g0
(execute program), exit. The disassembly routine is especially usefual in
reading and understanding machine language code. §

The Assembler Editor cartridge allows you to talk in the computer’s natural

language — machine language. Assembly language programming offers you
faster running programs and the ability to tatlor programs to your exact needs.

Preface v

CONTENTS

PREFACE v

INTRODUCTION

About This Book 1

ATARI Personal Computer Systems 1

How an Assembler EditorIs Used 2

GETTING STARTED

Allocating Memory: 5

Program Format—How to Write a Statement 8
Statement Number 8
Label e 8
Operation Code Mnemonic 8
Operand 8
Comment 8

How to Write Operands 12
Hex Operands 12
Immediate Operands 12
Page Zero Operands 12
Absolute Operands 12
Absolute Indexed @perands 12
Non-indexed Indirect Operands 13
Indexed Indirect Operands 13
Indirect Indexed Operands 13
Indexed Page Zero Operands 13
String Operands 13

USING THE EDITOR

Commands to Edit a Program 15
NEW Command 15
DEL Command 15
NUM Command 15
REN Command 15
FIND Command 15
REP. Command 17

Commands to Save (or Display)

and Retrieve Programs 19
LIST Command 19
PRINT Command 21
ENTER Command 21
SAVE Command 22
LOAD Command 22

Contents wil

4 USING THE ASSEMBLER

The ASM Command
Directives
OPT Directive
TITLE and PAGE Directives
TAB Directive
BYTE, DBYTE, and WORD Directives

BYTE
DBYTE
WORD.

LABEL = Directive

*

= Directive

IF Directive
END Directive

11 Modifying DOS I to Make Binary Headers
Compatible with Assembly Cartridge

77

ILLUSTRATIONS

5 USING THE DEBUGGER

Purpose of Debugger
Calling the Debugger
Debug Commands
DR Display Registers
CR Change Registers
D or Dmmmm Display Memory
€ or Cmmmm Change Memory
Mmmmm Move Memory.
Vmmmm Verify Memory
L or Lmmmmum List Memory With Disassembly
A Assemble One Instruction Into Memory
Gmmmm Go (Execute Program)
Tmmmm Trace Operation
S or Smmmm Step Operation
X Exit

- APPENDICES

(ST SRS

J & &1

10

vill Contonts

Errors

Assembler Mnemonics (Alphabetic List)
Special Symbols

Table of Hex Digits with Corresponding
Op Code Mnemonics and Operands
Expressions

Directives

ATASCII Code and Decimal/
Hexadecimal Equivalents

References

Using the ATARI Assembler Editor
Cartridge to Best Advantage

Quick Reference for Commands
Recognized by the Assembler Editor

Figure 1
Figure 2

Figure 3
Figure 4

Figure 5

Exhibit I
Figure 6
Figure 7
Figure 8

Figure 9

Relationship of various parts of Assembler
Editor cartridge to you and your software
Memory map without use of LOMEM
Memory map with use of LOMEM
Example of how to write Line No., Label,
Op) Code, Operand, and Comment in the
ATARI programming form

Statements as they would appear on the
sereen when entered on the keyboard
with the recommended spacing.

Sample reproducible ATARI
programming form)

Sample program as you write it on

the ATARI programming form
Appearance of the screen as your
programis entered on the keyboard
Appearance of the screen as your

sample program is assembled:

Normal (default) format of assembly
listing as it appearson the screen

3
5
7

9

10

13

18

18

25

26

Contents: ix

1

INTRODUCTION

ABOUT THIS
MANUAL

ATARI
PERSONAL
COMPUTER
SYSTEMS

To use the ATARI® Assembler Editor cariridge effectively, there are four
kinds of information that you must have. First, you need some guidance about
how to use the cartridge itself. Second, you need to know about the ATARI
Personal Computer System you are using with the cartridge. Third, you need to
know something about 6502 Assembly Language programming. And, fourth,
the Assembler Editor Gartridge was designed to be used with the ATARI disk
drives and DOS'II.

This manual explains the operation of the ATARI Assembler Editor cartridge. It
does not explain 6502 Assembly Language programming. If you are already
familiar with 6502 Assembly Language, you will find this manual amply suited
to your needs; otherwise, you should refer to one of the many books that ex-
plain 6502 Assembly Language programming; suitable books are listed in
Appendix 8.

If you are familiar with ATARIBASIC and have written some programson your
ATARI 400™ or ATARI 800™ Personal Computer System, you will find no
better way to learn assembly language than the combination of this manual, the
ATARI Assembler Editor cartridge, and a 6502 programming book.

If you have had' no experience with computers and no programming exper-
ience, then this manual is probably too advanced for you and you should start
by writing some programs using ATARI BASIC and your ATARI Personal Com-
puter System to become familiar with programming in general. Reading one of
the books recommended in Appendix 8 will help you learn assembly language.

The ATARI Assembler Editor cartridge is installed in the cantridge slot of the
ATARI 400 computer console and in the left cartridge slot of the ATARI 800
computer console. You must be familiar with the keyboard and all the sereen-
editing functions. That materialis covered in the appropriate Operator’s Manual
supplied with your ATARI Personal Computer System. The special screen-
editing keys are described in Section 6 of the Operator’s Manual. You should
read Section 6 and follow the insfructions until you are completely familiar with
the keyboard and the screen-editing functions.

You need not have any equipment except the ATARI Personal Computer System
console, your television or a video monitor for display, and the ATARI
Assembler Editor cartridge. However, without a permanent storage device you
will have to enter your program on the keyboard each time you wish to use it.
This can be tedious and time-consuming. An ATARI 410™ Program Recorder,
ATARI 810™ Disk Drive, or ATARI 815™ Dual Disk Drive (double density) is a
practical necessity. ‘

Introduction A

ASSEMBLER
EDITOR IS USED

The ATARI 410 Program Recorder is an accessory that functions with the
ATARI 400 and the ATARI 800 Personal Gomputer Systems. The proper opera-
tion of your Program Recorder is explained in Section 8 of the ATART 400 and. -
ATARI 800 Operator’s Manuals. Before using the Program Recorder with the
Assembler Edifor cartridge, be sure you know how to operate the Program
Recorder. The disk drives are accessories that function with any ATARI Per- L
sonal Computer System with at least 16K RAM. To use a disk drive you needia
special program, the Disk Operating System (DOS). At least 16K of memory is
required to accommodate DOS. Consequently, if you are using an ATARI 400
Personal Gomputer System, you must upgrade it from 8K to 16K (RAM): This can
be done at any ATARI Service Center. :

It you are using the ATARI 810 Disk Drive, you should refer to the instructions
that come with it. You should also read the appropriate Disk Operating System

Reference Manual. If you are currently using the 9/24/79 version of DOS (DOS),
you must use the program in Appendix 11 for the disk drive to be compatible
with the Assembler Editor cartridge. o

If you are using the ATARI 815 Dual Disk Drive, you should refer to the ATART
815 Operator’s Manual and the Disk Operating System II Reference Manual that
come with it.

Youican also add the ATARI 820", the ATARI825™ or the ATARI 822™ Printer
to/ your Personal Computer System to give you “hard copy’—that is, a perma-
nent record of your program written on paper.

All assembly language programs are divided into two pavts: a “source
program,” which is a human-readable version of the program, and the “cbject
program,” which is the computer-readable version of the program. These two
versions of the program are distinet and must occupy different areas of RAM.
As the programmer, you have three primary tasks:

® To enter your source program into the computer, edit it (make insertions,
deletions, and corrections) and save it to or retrieve it from diskette or
cassette.

® To translate your source code into object code.

® To monitor and debug the operation of your object program.

These three tasks are handled with three programs included in the ATARI
Assembler Editor. The first program, called the Editor, provides many handy
features for entering the program and making insertions, deletions, and corree-
tions to it. It also allows you to save and retrieve your source code. The second
program, called the Assembler, will translate your source program into an
object program. While doing so, it will provide you with an “assembly listing;
a useful listing in which your source program is lined up side by side with the

resulting object program. The third program is called the De_bugger; it helps
you to monitor and debug your object program. The relationship between these
three programs is depicted as follows:

YOU
Editor : Debugger
Source Program Object Program
| —»-1 Assembler

Figure 1. Relationship of various parts of Assembler Editor cariridge
to you and your software.

In Section 3 we explain the Editor; in Section 4, the Assembler; an(‘i in Section 5,
the Debugger. There are some fundamental ideas we must explain first.

Introduction 3

NOTES:

+ Notes

2

GETTING
STARTED

ALLOCATING
MEMORY

The very first decision you must make when you sit down to write your source
program involves the allocation of memory space.

All programs, regardless of language, occupy memory space. The computer has
a limited amount of memory and must manage its memory carefully, allocating
portions of memory for program, data, display space, and so forth. This is all
done automatically in BASIC, so the BASIC user need not worry about where in
memory his program and data are stored. Such is not quite the case with the
Assembler Editor cartridge. You have the power to place your programs
anywhere in memory that you desire. With this pewer comes the responsibility
to allocate memory wisely.

The ATARI computer system uses low memory, for its own internal needs. The
amount it uses depends on whether or not DOS is loaded into:RAM. In any.
event, the Assembler Editor cartridge will automatically place your source pro-
gram into the chunk of memory starting with the first free memory location.
As you type in more source code, the memory allocated to storing your source
code (called the “Edit Text Buffer”) srows. If you delete lines of source code, the
edit text buffer shrinks. You can visualize the memory allocation with this
figure, whichi is called a memory map:

Al B (@ “not'to scale
0S DOS 180, Edit Text Empty | Display
Hfﬂl RAM | Bytes Buffer . Memory | RAM [
1 1 1 i
I =i : I 1
] Bottomn of ‘Top of Taop of
Usable RAM Your RAM Addressable
Memory.

Figure 2. Memory map without use of LOMEN.

The edit text buffer always grows towards the right, into the “empty memory’”
area. The left side of the edit text buffer is fixed in place once you start entering
code.

Your problem is to determine where to store the object code produced by the
Assernbler. If you put the object code into the regions marked OS RAM, DOS
RAM,; or display RAM, you will probably cause the computer to crash and all
your typing will be lost. If you put it into the place called the edit text buffer,
the object code will overwrite the source code, causing more chaos. The only
safe place to put your object code is in the “empty memory’’ area.

Getting Started 5

You can find out where this empty memory area is by typing SIZE [EIGIR-
Three hexadecimal numbers will be displayed, like so:

SIZE G
0700 0880 5C1F
EDIT.

The first number (0700 in this example) is the address of the bottom of usable
RAM, the point labeled “A” on the memory map. The second number is the
address of the top of the edit text buffer, labeled “B” on the memory map. The
third number is the address of the top of empty memory, labeled “C” on the
memory map. The difference between the second and third numbers (how
good are you at hexadecimal subtraction?)is the amount of empty memory. You!
can use the SIZE command any time you desire to know how much empty:
INEmOry remains. :

Liberaily estimate the amount of memory your object program will requir
then subtract that amount from the third number. For extra insurance, round
the result down. For example, if you thought that your object code might
require 1.5K, you'd subtract 2K from $5CAF to get $541F and then for simplicity:
(and additional insurance) you would round all the way down to $5000. You
would therefore store your object code at $5000, confident that it would not
encroach on the display memory. More conservative estimates and greater care
would be necessary if memory were in short supply.

Having decided to store the object program starting at address $5000, your ne
task is to declare this to the computer. This is done with * = directive. The ve
first statement of the source code would read:

100 *=$5000

This directive tells the Assembler to put all subsequent object code into memo
starting at address $5000. Although it is not absolutely necessary, it is always
wise practice to make the *= directive the very first line of your source
programi.

You have two other strategies for allocating memory space for your ob;
program. The first and simplest strategy 1s to place your object code on page 6.0
memory. The 256 locations on page 6 have been set aside for your use. If you
object program and its data will all fit into 256 bytes, then you can put it there
with the directive: }

10 *=$0600

This is a good safe way te start when you are still learning assembly langt
programming and are writing only very short programs. As your prog
grow larger, you will want to move them off page 6 and use page 6 for data
tables.

The second strategy is to bump the edit text buffer (your source program)
ward in memory, leaving some empty memory space below: it. You can t
place your object code into this empty space. Figure 3 shows the adjustmer
the memory map.

A B C “not to scale
0S DOS Empty 180 Edit Text l Empty | Display.
RAM RAM Memory | Bytes Buffer Memory | RAM
l L | i l J_1 I
I L l LiL ' LI I
Bottom of Top of | Top of
Usable RAM Your RAM Addressable
Memory

Figure 3. Memory map with use of LOMEM.

This bumping is accomplished with a special command called LOMEM. The
command is special because it must be the very first command you enter after
turning on the computer. Its form is simple:

LOMEM XXXX EGEIGH

where XXXX is the hexadecimal address of the new bottom edge of the edit text
buffer (point A in the mermory map). You must not set LOMEM to a smaller
value than it nermally is, or you will overwrite OS data or DOS and crash the
system. Furthermore, if you set LOMEM too high, you will have too little room
for your source program. You must estimate how much memory your object
code will require, and bump the edit text buffer upward by that much plus
some more for insurance. Then your first'program instruction becomes:

10 *=$YYYY

where YYYY is the old value of A given by the SIZE command before you
turned off the computer, turned it back on, and used the LOMEM command.

You might wonder why anybody would want to use the LOMEM command and
store the object program in frent of the source program instead of behind it.
The primary reason this command is provided comes from the fact that the
Assembler program, as it translates your source program into an object pro-
gram, uses some additional memory (called a symbol table) just above the edit
text buffer. If you really wanted to, you could figure just how much memory
the symbol table uses; it is three bytes for each distinct label plus one byte for
each character in each label. Most programmers who don’t enjoy figuring out
how big this symbol table is use the LOMEM command so they won’t have to
worry about it. (Only the label itself counts, not the number of times it appears
in the program.)

Allocating memory can be a confusing task for the beginner. Only two instruc-
tions (LOMEM and * =) are used, but if they are misused you can crash the
system and lose your work. Fortunately, if you restrict yourself to small pro-
grams initially yow'll have plenty of empty memory space and fewer allocation
problems.

The * = directive will be followed by your source program. The source program
is composed of statements. The statements must be written according to a
rigorous format. The rules for writing statements are given in the next section.

Getting Started T

PROGRAM
FORMAT—HOW
TO WRITE A
STATEMENT

8 Getting Started

A source program consists of statements. Each statement is terminated wit
TS0G0. A statement may be 1-106 characters long, or almost three lines on thet s
screen. A statement is also called a line. The distinction is made between 4
physical line (aline on the screen) and a logical line (the string of characters, up,
to three physical lines between GHULS)- ;

A statement can have up to five parts or “fields”: the statement number, a label,
the operation code mnemonic or directive, an operand, and a comment. These
five fields occupy successive positions in the statement, with the statemen
number coming first and the comment coming last. Fields are separate
(““delimited”) by single spaces.

Statement Number

Every statement must start with a number from 0 to 65535. It is customary f

number statements in increments of 10, 20, 30, ete. The Editor automaticall;
puts the statements in numerical order for you. Numbering by tens allows yo
to insert new statements at a later date between existing statements. To assisi
you, the Editor has several convenient commands for automatically numbering:
statements (see NUM, REN).

Label

A label, if used, occupies the second field in the statement. You must leave
exactly one space (not a tab) after the statement number. The label must start
with a letter and contain only letters and numbers. It can be as short as one ==
character and as long as the limitation of statement length permits (106 less the

number of characters in the statement number). Most programmers use labels
three to six characters long.

You are not forced toshave'a label. To go on to the next field, enter another space
for a tab). The Assembler will interpret the entries after a tab as an operation
code mnemonic.

Operation Code Mnemonic

The operation code (or op code) mnemonic must be one of those given in
Appendix 2. It must be entered in the field that starts at least two spaces after
the statement number, or one space after a label. An operation code mnemonic
in the wrong field will not be identified as an error in the Edit mode, but will be
flagged when you assemble the program (Error 6).

Operand

The field of the operand starts at least one space (or a tab) after an operation code
mnemonic. Some operation code mnemonics do not require an operand. T
Assembler will expect an operand if the op code mnemonic requires one. Eac
different way of writing an operand is given in the section called HOW TO
WRITE OPERANDS.

Comment

A comment appears on the listing of a program, but does not in any way affect
the assembled object code. Programmers use comments to explain to others (an¢
to themselves) how a section of code works.

There are two ways to have the Assembler interpret entries as comments. One
way is to make the entries in the comment field, which occupies the remainder
of the line after the instruction field(s). At least one space must separate the
instruction fields from the comment field. There may not be enough space in
the cornment field for the comment you wish to write there. In that case it is
best to use one or more lines as comment lines dedicated only to'making com-
ments and containing no code. To do so, you enter one space and a semicolon
followed by any comment or explanatory markings you desire. Everything
between the initial semicolon and the is ignored by the Assembler, but
will be printed in the listing of the program.

A sample programming form for assembly language 1s reproduced as Figure 4.
The form shows examples of how to enter line nuniber, label, op code, operand
and comments. These classes of entry are lined up vertically on the program-
ming form. Most variation occurs in the method of entering a comment.
Therefore, Figure 4 includes examples of the various ways to enter comments.

Sample, Reproducible
ATARI Programming Form

O SAMPLE. . ASM B IWEIQI.?IIE
RRQGRAMMEHJ’M&! m
LINENO. | LABEL cobe | ORERAND COMMENT
10 LABL LDX ABS COMMENT I CoMMENT FiEty
20 TRA: COMMENT I COMHENT FIECD i
Ao THA COMME 1 AUWDMA
‘ﬁr,kl.u.'l ConTinuEs ol THE Lie
) cLe o i IS5 LI =
|50 2 NuEs_ONTH S NUMBERED LIE
260 ADL 4B
e 510) s COMMENT 0N 175 OWN LIE
480 Adqmnuvuﬂm

300 | PREVious LINE (190) coninis |
Dduf BLANKS , (DPnee BAR). LINE
(2] ! L

ek

S

/V\V\

Figure 4. Example of how to write Line No., Label, Op Code,Operand,
and Label on the Atari programming form.

Getting Started 9

The spacing on the programming form is not the same as the spacing to be use:
on the sereen, controlled by keyboard entry. On the screen the classes of entr
(the fields) are not lined up vertically. The screen has 38 positions (you s
change it to a maximum of 40), fewer than the programming form, and that
the main reason not to use many spaces between fields. Another difference b
tween the programming form and screen is the ‘wraparound’ on th

screen—automatic continuation of characters onto the next line. '

Figure 5 shows the entries in Figure 4 as they should appear on the screen when'
entered on the keyboard with the recommended spacing. In general, the spat
ing recommended in this manual is the minimum spacing that will be correctl:
interpreted by the Assembler Editor. If you prefer to have more vertical align-
ment of fields, use TAB, rather than the single spacing between fields that we

recommend. The statements below show various examples of comments co
rectly positioned in the statement. Each comment in the examples starts w.

“COMMENT” or semicolon(;). 3

Figure 5. Statements as they would appear on the screen when entered
on the keyboard with the recommended spacing. The vario
ways to enter comments are illustrated. Compare with Figure

HOW TO WRITE This section shows how to write operands. The examples use statement number

OPERANDS

XXXX (also called line number XXXX). An instruction entered without a state-
ment number is not allowed by the Editor.

The examples use BY (for byte) and ABS (for absolute) as a one-byte and a two-
byte number, respectively. This use implies that the program includes defini-
tions of BY and ABS as, for example:

0100 BY=155
0200 ABS=567

Please refer to the description of the LABL - directive for an explanation of the
definitions of lines 100 and 200.

Hexadecimal Operands
A number is interpreted as a decimal number unless it is preceded by $, in
which case it is interpreted as a hexadecimal number.
Examples:

30! STA $9325

80 ASL $15
Immediate Operands
An immediate operand is an operand that contains the data of the instruction.
The pound sign (#) must be present to indicate an immediate operand.
Examples:

40 LDA #12

70" ORA #3$3C

1000 CPY #BY

Page Zero Operands
When an operand is a number less than 255 decimal, (FF hex) and is not
immediate, the number is interpreted as a page zero address.
Examples:

150 LDX $12

250 ROR 33

500, DEC BY
Absolute Operands

Absolute operands are evaluated as 16-bit numbers.

Examples:

20 LDX $1212
40 GRY 2345

990 DEC 579
2350 BIT ABS

Absolute Indexed Operands

An absolute indexed operand uses register X or Y. The operand is written
X on N

11 Gelting: Started

Getting Started 12

Examples:

10 AND $3€26,X
110 EOR 20955,Y
1110 STA ABS,Y

Non-Indexed Indirect Operands

In general, an indirect operand is written with parentheses. The address wit.
the parentheses is an intermediate address which itself contains the effect:
address. The only instruction with a non-indexed indirect operand is Jump
direct. The operand is a number enclosed in parentheses. The parentheses in
operand enclose a number or an expression that is interpreted as an i
mediate address.

Examples:

JMP ($6000)

JMP (ABS)

JMP (7430)

JMP (ABS+256*BY)
Indexed Indirect Operands
An indexed indirect instruction uses register X. The operand is written (
Examples:

10 ING ($99,X)

Indirect Indexed Operands
An indirect indexed instruction uses register Y. The operand is written (—)
Examples: :

10 LDA ($2B),V
110 CMP' ($E5),Y
1110 ORA (BY),Y

Indexed Page Zero Operands
A zero page indexed operand is written —,X or —Y
Examples:

10 INC $34,X
110 STX $AB,Y
A OFRXTE BY, Vs

String Operands

Operands or parts of operands enclosed in' double duotation marks.
translated into the ATASCII codes of the characters between the quotati
marks. The use of such operands must of course be appropriate to the typi
instruction or directive to which they are appended.

Examples:

10 ADDR .BYTE “9+1 =s TEN?”
Execution. of this directive causes the ATASCII numbers corresponding
“+2 etc., to be stored at successive locations starting at ADDR. Note

ATASCII representation of any character except the duotation mark (°
stored with the .BYTE directive having a string operand.

Exhibit I
Sample, Reproducible
ATARI Programming Form

PROGHAM PAGE OF DATE
PROGHAMMER
OP
LINENO. LABEL CODE OPERAND COMMENT

Gefting Started. 131

NOTES:

14 Notes

3

USING
THE EDITOR

COMMANDS TO
EDIT A
PROGRAM

Now that we have explained how to get started writing a program, it is up to
you to actually write the program. This manual contains very little information
on assembly language programming techniques. We assume that you are
already familiar with assembly language. The remainder of the section
describes how to use the Assembler Editor cartridge.

A command is not the same thing as an instruction. An instruction has a line
number; a command has no line number and is executed immediately.

NEW Command

This command clears the edit text buffer. After this command you cannot
Testore your source program; it has been destroyed.

Some programmers have the habit of giving the NEW command (or its
equivalent with other assemblers) when they start a programming session. The
Teason is to remove any ‘garbage” that may be in memeory by mistake. Since
the ATARI Personal Computer System clears its'memory when it is turned on,
such routine use of NEW would be a needless precaution. Because NEW destroys
your entire source program, it is more important to develop a habit of NOT
using it routinely. You should, rather, use NEW in a very deliberate fashion only
when you want to remove a source program from RAM.

DEL Command

This command deletes statements from your source program.

DELxx EEIGN deletes statement number xx.
DELxx,yy GEIGN deletes statement numbers xx through yy.

NUM Command
This command assigns statement numbers automatically.

NUM increments statement number by 10
after each GEILLS. The new statement
number, followed by a space, is auto-
matically displayed.

NUMnn has the same effect as NUM, but the
increment is nn instead of 10.

NUMmm,nn forces the next statement number to be
mm and the increment to be nn.

cancels' the NUM command,

Using the Editor 15

i The effect of the NUM command stops automatically when a statement number |
that already exists is reached. For example:

10 LDX #$EE
‘ 20 CMP. MEMORY
‘ NUM 15,5
‘ 15
/

After statement number 15, the next statement number would be 20, whi
already exists, so the NUM command is cancelled. The automatic numbering of =

1 statements will continue until the next number is exactly equal to an existin
number. A slight change from the above example illustrates this:

10 LDX #$EF
20 CMP MEMORY

NUM 156
b AR
21

Caution: You cannot use the special keyboard editing keys to change othe
statements while the NUM command is in effect. You will succeed in changi
what appears on the screen, but, in an exception to the general rule, the ¢
tents of the edit text buffer will not be changed.

I REN Command

This command renumbers statements in your Source program.

REN RETHRN renunbers all the statements in
increments of 10, starting with 10.

| RENnn §50 renumbers all the statements in
| increments of mn, starting with 10.

RENmm,nn T8 renumbers all the statements in
increments of nn, starting with mm.

FIND Command

This command finds a specified string. The ways to write the command a
shown below.

EIND/SOUGHT/ finds the first occurrence of the string
SOUGHT. The statement that contains
the string is displayed.

FIND/SOUGHT/, A (TR finds all occurrences of the string
SOUGHT, All statements containing st
occurrences are displayed.

FIND/SOUGHT/xx: finds the string SOUGHT if it occuns in 5y
statement number xx. Statement xxis
displayed if it contains the string. ’

FIND/SOUGHT/xX,yy, A finds all occurrences of the string
SOUGHT between statement number
and yy. All the statements that conta
the string are displayed.

16 Using the Editor.

In these examples, the string SOUGHT is delimited (marked off) by the
character /. Actually, any character except space, tab and can be used as
the delimiter. For example, the command

FIND DAD

finds the first occurrence of the character A. The delimiter is the character D:
The delimiter is defined as the first character (not counting space or tab) after
the keyword FIND. This feature is perplexing to beginners; its purpose is to
allow you to search for strings that contain slashes (/) or, for that matter, any
special characters.

The general form of the command is
FIND delimiter string delimiter [lineno, linenol [,Al

In the general form, symbols within a pair of brackets are optional qualifiers of
the command.

REP Command

This command replaces a speeified string in your source program with a dif:
ferent specified string.

REP/OLD/NEW: replaces the first occurrence of the string
! OLD with the string NEW.

REP/OLD/NEW/xX,yy replaces the first oceurrence of the string
OLD between statements number xx to
vy with the string NEW.

REP/OLD/NEW/,A replaces all the occurrences of the string
OLD with the string NEW.

REP/OLD/NEW/XX,yy, A replaces all the occurrences of the string
OLD between statements xx to yy with
the string NEW.

REP/OLD/NEW/xx%,5v,Q) displays, in turn, each occurrence of the
string OLD between statements xx and

yy-

() stands for “query.” To replace the
displayed OLD with NEW, type Y, then
GAE: To retain the displayed OLD,
press (D

In these examples, the strings OLD and NEW: are delimited by the character /2.
Aswith the FIND command, any character except space, tab and RETURN, can
be used as the delimiter. For example, the command

REP+RTS +BRK +,A
replaces all oceurrences of RTS with BRK. The delimiter is the character “+°7.
The general form of this command is o
REP delimiter OLD delimiter NEW. delimiter [lineno, lineno] [,A]

In the general form, symbols within a pair of brackets are optional qualifiers of
the command and the symbols within braces (A and Q) are alternatives.

Using the Editor 17

18 Using the Editor

Sample Program

Let us assume you have written a program on an ATARI Programming Form a

shown in Figure 6:

Exhibit 1 Sample, Repraducible
ATARI Programming Form

Facamor i "1 P sbiles
[—&ﬁ =W D ‘m—‘l

UNeNoi | LABeL ISR opERAND COMMENT!
lo b= 53000

coy| 00

EEP. |lok AtH
Pel Xeq | Shue Face
IME RET.

oo | = B30k

eq e 4 B0
END)

Figure 6. Sample Program as you write it on the
ATARI programming form

Then when you type it in it would appear on the screen as shown in Figu

00 3

LBY 8500 i

REP_LDX ABSH.Y °

BNE HEQ SAME PAGE
TALLY.

Figure 7. Appearance of the screen as your programi
entered on the keyboard.

COMMANDS TO
SAVE (OR:
DISPLAY) AND
RETRIEVE
PROGRAMS

The commands to save (or display) and retrieve programs are:

LIST saves or displays a source program

PRINT s thie same as LIST, but omits line numbers
ENTER retrieves a source program

SAVE saves an object program

LOAD retrieves an object program

With each of these commandsithere isa parameter that specifiesithe device that
is the source or destination of the program that is to be saved, displayed or
retrieved. The possible devices are different for different commands, and the
default device is also different, Some of the commands have optional parameters
that limit the application of the command to specified parts of the program.

The parameter that specifies the device that is the source or destination of the
program is written as follows:

#E: is the screen editor
#P: is the printer
#C: is the Program Recorder

#D[nl:FILENAME is a disk drive.
nis 4, 2, 3 or 4. D: is interpreted as D1:.
A program saved on or retrieved from a diskette must be
named (FILENAME).

LIST Command

device:| Lxx,yyl
Format: LIST# | filespec

Examples: LIST#E:
LIST#D:MYFILE

This command is used to display or save a source program. The device where
the source program is to be displayed or saved is given in the command. If no
device is specified, the screen is assumed by default. Other possible devices are
the printer (#P.), Program Recorder (#G:) and disk drive (#D1: through: #D8: or
#D:, which defaults to #D1:). The commands to transfer a program (LIST it) to
these various devices are:

LISTHE: (LIST#E: is the same as LIST)
LIST#P:
LIST#C: (Use cassette-handling procedures described in your Pro-

gram Recorder Operator’s Manual.)

LIST#D:filename where filename is an arbitrary name you give to the
program. Filename must start with a letter and have no
more than eight characters, consisting of letters and
numbers only. It may also have an extension of up to
three characters. For example, NAME3, ST5, and
JOHN.23 are all legal names.

Using the Editor 19

20 Using the Editor.

‘The examples above show the appearance of the sereen, since that is thi

The forms of the commands to transter only particular lines (lines xx to yy
device are:

LISTAE:,XX,yy (LISTAE: xx,viv 15 the same as LIST,xx,vy)
LIST#P: XX,y
LISTEAC: XX, V3T (Use cassette-handling procedures described in the

Program Recorder Operator’s Manual.)
LIST#D:NAME, xx,yy where “NAME" is an arbitrary name you give to thi
program. See the description above.

A single line may be displayed or saved with the command:

LISTlineno where lineno 1s the line number.

Caution: The DOS makes sure that every file has a unique name by deleting
files if necessary. Therefore, do not name a file you are listing to diskett
the name of a file that is already stored on the diskette, unless you wi
replace the existing file with the one you are listing.

The LIST command is illustrated below. No device is specified, so the disp
device is the screen, by default. The small sample program, written
previous section, is used for illustration.

EDIT
LIST £

10, *=$3000

20 LDY #00

30 REP LDX, ABSX, Y

40 BNE XEQ SAME PAGE
50 INY TALLY

60' JMP REP

70/ ABSX - $3744

80 XEQ = *+$60

90/ END

EDIT
LISTS0

30 REP LDX ABSX, Y

EDIT _
LIST 60,80 §ERGIY)

60 JMP REP
70 ABSX=$3744
80 XEQ-*+3$60

EDIT
i

device. The program or the particular lines in the examples could be disy
on the printer or saved on cassette or diskette by using the forms of t
command described above. Note that the commands tolerate a certain
of variation in the insertion of blanks.

PRINT Command

This command is the same as LIST, except that it prints statements without
statement numbers.

Example:

EDIT
PRINT iG]

= $3000

LDY #00

REP LDX ABSX, V.
BNE XEQ SAME PAGE
INY, TALLY

JMP REP
ABSX = $3744

XEQ~* +$60

_END

EDIT
PRINT30

REP LDX ABSX, Y

EDIT
PRINT 60,80

JMP' REP
ABSX = $3744
XEQ=*+$60

EDIT

|

After using a PRINT command, no further command can be entered until you
press EETLW, which causes the EDIT message and curser to be displayed.

ENTER Command

Format: ENTER# | device:
filespec

Examples: ENTER#C:
ENTER#D:MYFILE

The command ENTER is used to retrieve a source program. As with the com-
mand LIST, a device has to be specified, in this case the device where the pro-
gram is stored. There is only one device, the disk drive, on which anamed pro-
gram is stored in a retrievable form. To retrieve a source program from a
diskette in a disk drive, the command is:

ENTER#I):NAME

Using the Editor 24

22 Using the Editor

where “NAME" is the arbitrary name you gave to the program when you li
it on the diskette. This command clears the edit text buffer before transfer
data from the diskette.

To retrieve a source program from cassette, the command is:

ENTER#C: (Follow the CLOAD procedure given in your 410 Pro
gram Recorder Operator's Manual.) Note that ENT
clears the edit textbuffer before retrieving the
source program.

L0 menge a source program on cassette with the source program in the ed {
buffer, the command is: ;

ENTER#C:,M

In the above command, where a statement number is used twice (in the edit.
buffer and on tape), the statement on cassette prevails: ;

Commands for saving and retrieving an object program are SAVE and LO
They correspond to LIST and ENTER, respectively.

SAVE Command

Format: SAVE# {deme:

filespe C} < addressi,address2

Examples: SAVE#C:<1235,1736
SAVE#D2:MYFILE < 1235,1736

To save an object program residing in hex address! to address2 on casse
diskette, the commands are:

SAVE#C: < addresst,address2

CAUTION: Use the CSAVE procedure illustrated in your 410 Prograj
Recorder Operator’s Manual. f

SAVE#D:FILENAME < addressi,address2

where FILENAME is an arbitrary name you give to the bloc
memory that you are saving (where youn object prograrn
stored).

LOAD Command

device:
Format: LOAD#
filespec
Examples: LOAD#C:
LOAD#D:MYFILE

To retrieve an object program that had previously been SAVED and which had
previously been called NAME; the'command is: t

LOAD#D:NAME where NAME is the arbitrary name that you gave to the
object program when you saved. it on diskette:

LOAD#C: (Use the CLOAD procedure described in your 410 Pro-
gram Recorder Operator’s Manual.)

These commands will reload the memory locations addressi to address2 with'

the contents that were previously saved. The numbers addressi and address2
are those that were given in the original SAVE command.

Using the Editor 23

4

NOTES:

24 Notes

USING
THE ASSEMBLER

THE ASM
COMMAND

The general form of the ASSEMBLE command is

AP
(HE]
|| ASM# [#D[n]:PROGNAME[.SRC]] | | L. #DIJ:LISTINGLLSTII| | G#PIn):SEMBLED[.OBJ]] |
Where source program Where object program
is |located is to be stored

Where assembly listing
is to be stored or displayed

The default values of the three parameters of the ASM command are the edit
text buffer for the source program, the television screen for the assembly
listing, and computer RAM for the object program (the assembled program). To
assemble a program using default values of ASM, type

ASM [GEETY

On receiving thiscommand, the Assembler translates the source program in the
edit text buffer into object code and writes the object code into the memory loca-
tions specified in the source program. When this process is completed, the
assembled program is displayed on the screen. For an example of assembly with
default parameter values, we use the small sample program that we wrote.
Figure 8 shows the appearance of the screen after the ASM command.

3600 AGEE
L IOP2 BE4.
3985 006

IT44
3068
3008

EOTY
2 3

Figure 8. Appearance of the screen as your sample program is
assembled.

Using the Assembler 25

26!

Using the Assembler

Using statements 30 and 40 as examples, the format of the assembled program is
shown below. Note, however, that some of the spacing can be changed by the
TAB directive.

3002 BE4437 30REP. LDX = ABSX, Y

?005 D064 40 BNE XEQ

SAME PAGE
Operand
Op Code Mnemonic
Label
Statement Number
Instruction

Comment from previous
line starts here
Address

Figure 9. Normal (default) format of assembly listing as it appears
on the screen.

The general form of the command shown at the beginning of the section shows
how to override the default values of the parameters of the command. These
override selections are explained below.

Location of Source Program

You may specify the location of the source program as a named program on

diskette. You must have previously stored the source program under that name, DIRECTIVES
using the LIST command. In the general form of the ASM command, the source (PSEUDO
program on diskette has been given the extension .SRC. Extensions are optional. OPERATIONS)

Where Assembly Listing Is To Be Stored

The default value is the sereen (#E:). The other possibilities are the printer (#P3),
the Program Recorder (#C:), and the disk drive (#Dn]:NAME [.LST).

Where Object Program Is To Be Stored

You may specify that the assembled program is to be stored directly on diskette,
using any name (subject to the restrictions of DOS). In the general form of the
ASM command, the assembled program has been given the extension .OBJ.
Extensions are optional.

A

It is easy to become confused by names of programs when a program may exist
in several related forms. To reduce the chance of confusion, we recommend
using names that include identifying extensions, such as .SRC, .LST and .OBJ for
a source program, an assembly listing and an object program, respectively.

Note that in the ASM command the source program must be in the edit text buf=
fer or on a diskette in the disk drive. It can not be on a cassette in the Program
Recorder. The primary reason for this restriction is that the Assembler requires: = =
two passes of the source program and the Program Recorder is not controllable =
to permit two passes. However, you can assemble a source program recorded

with your Program Recorder. First transfer the program from Program
Recorder tol the edit text buffer with the command:

ENTER#C:; (Follow the cassette-handling
instructions in your Program
Recorder Operator’s Manual.)

The ASM command with no default parameters is illustrated in the example
below:

ASM#D:SOURGE, #P:,#D2:SEMBLED.OBJ

The above command takes the source program that you had previously stored
on diskette and called SOURCE, assembles it, lists the assembled form on the
printer, and records on the diskette the machine code translation of the pro-
gram (the object program). The object program is given the name
“SEMBLED.OBJ.”” Note that commands of this form store the machine code on
diskette, not in computer RAM.

To make a default selection, enter a comma, as in the following useful
command:

ASM,#P;

The above command takes the source program from the default edit text buffer,
assembles and lists it on the printer as before, and stores the machine code
object program directly into computer RAM.

Directives are instructions to the Assembler. Directives do not, in general, pro-
duce any assembled code, but they affect the way the Assembler assembles
other instructions during the assembly process. Directives are also called pseudo
operations or pseuds ops.

Directives are identified by the Assembler by the . at the beginning. The only
exceptions are the LABEL = directive and the *= dxrective.

A directive must have a line number; which it follows by at least two spaces.
The directive LABEL = is an exception—there must be only one space before the
label.

OPT Directive

This directive specifies an option. There are four sets of options. These are:

. OPT NOLIST

HOPILIST (this is the default condition)
. OPT NOOBJ

L ORRNOR] (this is the default condition)
. OPT NOERR

. OPT ERR (this is the default condition)
. OPT NOEJECT

QPR FJEGT (this is the default condition)

Using the Assembler 27

28 Using the Assembler

The second listed of each pair represents the standard or default condition.

100 . OPT NOLIST The effect of these directives is to omit from the listed
(part of source form of the assembled program the lines between lines
program) 100 and 200. (These line numbers are arbitrary.)

200.. OPT LIST

100 . OPT NOOOB] Assembly is suppressed between lines 100 and 200. The

(part of source effect of these directives is to omit from the object pro-
program) gram code corresponding to the lines between' lines 100
200 . OPT OBJ and 200. Memory corresponding to these lines is skipped

over, leaving a region of untouched bytes in the object
program. (These line numbers are arbitrary.)

100 . OPT NOERR The effect of these directives is to omit error messages

(part of source for the assembled program lines between lines 100
program) and 200,
200 . OPT ERR

100 . OPT NOEJECT The effect of these directives is to suppress, between
(part of source lines 100 and 200, the 4-line page spacing that is
program) normally inserted after every 56 lines of the listed form
200 . OPT EJECT of the assembled program.

More than one option may appear on a line. Options are then separated by a
comma, as follows:

1000 . OPT NOLIST,NOOB]

Title and Page Directives

10 . TITLE “name”
20 .PAGE “optional message”

We explain these directives together because they are intended to be used
together to provide easily read information about the assembled program.

These directives are most useful when the assembled program is listed on the
printer.

TITLE and PAGE allow you to divide your program listing into segments that
bear messages written for your own convenience, much as you might add short
explanatory notes to any complex material.

The PAGE directive causes the printer to put out six blank lines (printers so
equipped will execute a TOP OF FORM), followed by the messages you have
given for TITLE and PAGE. This causes the messages to stand out somewhat
from the rest of the assembled program listing.

Usually there is only one TITLE directive, giving the program name and date,
and different PAGE directives for giving different page messages. Then on: =
listing the assembled program, the same TITLE message on every page would
be followed by a different PAGE message.

The blank lines that the PAGE directive produces on the 40-column ATARIT 820
Printer can be used to break up a long program into segments that can be =
mounted in a notebook. ;

To remove a title, use the following form:
1000R L IELE =
The above directive removes titles after line 1000.

The PAGE directive on its own causes a page break—the printer simply puts out
a number of blank lines.

Tab Directive
10 . ‘FABn1,n2n3

The TAB directive sets the fields of the statement as they appear when assem-
bled and listed on the screen or the printer. Let us use the specific example of
Statement 40 of the small sample program we previously used for illustration. It
was written as follows:

SO
40 BEQ) XEQ SAME PAGE
B0

Note that one space, rather than a tab, is used between each field. Using spaces
rather than tabs lets you wirite longer programs, since the edit text buffer will
not be filled up with the extra spaces that tabs would redquire.

Gompressing the program in this way malkes it less easily readable than we
might wish, but we can use the TAB directive to give us a more readable
assembled version. The form of the directive 1s

lineno . TAB 10,15,20
or, more generally,
lineno . TAB numberi number2,numbers

The previous example has a source program that was compressed in the above
fashion. Note the difference between the spacing of the source listing and the
assembled program. This is an example of the default TAB spacing.

The effect of the TAB directive of line xxx is confined to the appearance of lines
following xxx when they are assembled and listed on the printer or screen.

In the case of line 40, the appearance on the printer would be as shown below:

3005 D064 401 BNE XEQ SAME PAGE
e

115

20

If the TAB directive is not used, then the appearance of the assembler line on the
printer will be as shown below in the default mode:

3005 D064 40 BNE XEQ S

AME PAGE
—1pd J
17
27

That is, the default setting corresponds to . TAB 12,17,27.

Using: the Assemblep 29

30 Using the Assctnbler

The appearance of this line on the screen will be different only because the
screen has 38 characters positions, while the printer has 40.

BYTE, DBYTE and WORD Directives

(IO BYA B a0t i
206 BNVERE S9ASRE . SNA
SO0 HBYNE aib vl n!
400 . .WORD a;b,... .1

These directives are similar in that they are used to insert data rather than
mstructions into the proper places in the program. Each directive is slightly
different in the manner in which it inserts data.

BYTE Directive

The BYTE directive reserves a location (at least one) in mensory. The directive
merements the program counter to leave space in memory tc be filled by infor-
mation required by the program. The operand supplies the data to go into that
space.

Examples:
R T
20 . BYTE 34
BSOS

Here, the Assembler assembles into successive locations the instruction of line
10, then the decimal number 34, then the instruction of line 30.)

A0
20 . BYTE 34, 56,78
SOREHS

Here, the Assembler assembles into successive locations the instruction of line
10, then the decimal numbers 34, 56 and 78, then the instruction of line 30. The
operand may be an expression more complex than the numbers used in the
examples. The rules for writing and evaluating an expression are given in
Appendix D. :

SO
2O BYARE AT ARIS
80t

10, then the (ATASCII code) hex numbers 41, 54, 41, 52 and 49, then the instru
tion of line 30.

DBYTE Directive

The DEYTE directive reserves two locations for each expression in the operand.
The value of the expression is assembled with the high-order byte first (in th
lower number location). For example: 2

10 *=$4000
20 . DBYTE ABS:+$3000

When line 20 is assembled and the value of ABS+$3000 is determined to be!
$5123, $51 1is put in location $4000 and $23 is put in location $4001.

LABEL =
DIRECTIVE

WORD Directive

The WORD directive is the same as the DBYTE directive except that the value of
the expression is stored with the low-order byte first.

For example:

10 *=$4000
20 .WORD. ABS+$3000

When line 20 is assembled and the value of ABS'+$3000 is determined, as before,
to be $5128, $23 is put 1n location $4000 and $51 is put in location $4001.

The WORD) directive simplifies some programming since addresses in.machine
code are always given in the order low byte followed by high byte. Therefore,
the WORD) directive is useful, for example, in constructing a table of addresses:

100 LABEL = expression

The LABEL~= directive is used to give a value to a label. Two examples appear in
the sample program we used before. Statements 60 and 70 give values to ABSX
and XEQ as follows:

60/ ABSX=$3744
70/ XEQ~*+$60

Since the symbol that is given a value is a label, there must be only one space
after the statement number. The expression on the right cannot have a value
greater than FFEF (hex). The rules for writing and evaluating an expression are
given in Appendix 4.

When the LABEL - directive is used to give a value to a label, the label can be
used 1n an operand, by itself; as in statements 30 and 40 in the sample program.

A defined label may also appear as part of an expression. ©ur sample program
does not contain an example, so we give one below in' line 240.

100 TABI1=$3000

2401 "TAB2 =TAB1 +$20
When the program is assembled, TAB2 will be given the value $3020.

You should note that defining a label in this way gives the label a specific
address; it does not define the contents of the address. In the example, above,
TAB1 and TAB2 might be the location of two tables that contained the values of
variables that your program redquired. 3

* = Directive

100 *= expression

We encountered the * = directive in the “getting started” commands, where it
is used to: set the stanting location of the assembled pErggraum. When the

Assembler encounters the *= L0 deosiuin, it sets tL0 o agrum counter to) the
valuie of the expression.

Using the Assembler 31

32 Using the Assembler

You write *= without the initial *.” that the other directives have (except
LABEL=). Also, note that you write *= without any spaces between * and =.

You should not confuse the * = directive with the LABEL= directive. The * in. &
*= is not a label. Note, however, that the * = directive itself may have a label, as' -
follows:

200 GO *=expression
500 JMP GO

The Assembler will assemble statement 500 as a jump to the value the program: =
counter had BEFORE it was changed by line 200. R

The * = directive is useful for setting aside space needed by your program. For
example, you will frequently want space reserved starting at a particular loca-
tion. Use the following form:

720/ T/ABIES5! " *=* 504
740

The effect of the directive is to reserve 24 locations immediately after TABLE35. =
Other parts of your code will not be assembled into these locations (unless you
take pains to do so). Your program can use TABLE35 as an operand and
TABLESS can be used as an element in an expression that your instructions
evaluate in accessing the table.

IF Directive
900. IE expression @LABEL

990 LABEL End of conditional assembly

The IF directive permits conditional assembly of blocks of code. In the illustra-
tion above, all the code between lines 900 and 990 will be assembled if and only:
if the expression is equal to zero. If the expression 1s not equal to zero, the IF
directive has no effect on assembly.

The example given below shows how different parts of a source program may
be omitted from assembly according to the value assigned to the LABEL in the IF
divective. The source program is assembled with: Z=0 in one case and Z=1 in
another. With Z=0, the instruction TAX is assembled, and with Z=1 the in-
struction ASL A is assembled. Obviously, this kind of selective assembly can be
extended indefinitely.

SOURCE CODE
0100 ;CONDITIONAL ASSEMBLY EXAMPLE
0120 Z=0
0130 *=$5000
0140 LDA =$45
0150 . IF Z@ZNOTEQUALQ
0160 TAX ;THIS CODE ASSEMBLED IEF Z=0
0170 ZNOTEQUALOQ
0180 . IF Z—1@ZNOTEQUATLA
0190 ASL A ;THIS GODE ASSEMBLED IFF Z -1
0200 ZNOTEQUALL
0210 INX ;THIS CODE ALWAYS ASSEMBLED

R

-

ASSEMBLY. LISTING (40-col. format)
0100 ;CONDITIONAL ASSEMBLY E
XAMPLE
0000 0120Z = 0
0000 0130 *= $5000
5000 A945 0140 LDA #$45
5002 0150 .IF Z@ZNOTEQU A
Lo
5002 AA 0160 TAX ;
THIS CODE ASSEMBLED!IFE Z =0
0170 ZNOTEQUALQ
5003 0180 .IF Z-1@ZNOTEQ)
UALA
0190 ASL A
0200 ZNOTEQUAL1
5003 E8 0210 INX ;
THIS CODE ALWAYS ASSEMBLED

0100 ;CONDITIONAL ASSEMBLY E
XAMPLE
0001 01202 = 1
0000 0130 *= $5000
5000 A945 0140 LDA #$45
5002 0150 .IF Z@ZNOTEQUA
Lo

0160 TAX ;THIS CODE ASSEMBL
ED'IFE Z =0

0170 ZNOTEQUALQ
5002 0180 .IF Z- 1@ZNOTEQ
TALL
5002 0A 0190° ASL A
0200 ZNOTEQUALA
5003 E8 0210 INX ;
THIS CODE ALWAYS ASSEMBLED!

END Directive

1000 . END

Every program should have one and only one END directive. It tells the
Assembler to stop assembling. It should come at the very end of your source
program. Later, if you decide to add more statements fto your pregram, you
should remove the old . END directive and place a new one at the new end of
your source program. Eailure fo do so will result in your added source code not
being assembled. This mistake is particularly easy to make when you make
your additions with the NUM command. It is not always essential to have an
. END directive, but it is geod practice.

Using the Assembler 33

NOTES:

34 Notes

5

DEBUGGING

PURPOSE OF
DEBUGGER

CALLING THE
DEBUGGER

DEBUG
COMMANDS

The Debugger allows you'to follow the operation of an object program in detail
and to make minor changes in it.

A knowledge of machine language is helpful when you use the debugger, but it
is not essential, The Debugger is able to convert machine code into assembly:
language (disassemble), so you can make code alterations at particular memory:
locations. All numbers used by the Debugger, both in input and output, are hex-
adecimal.

The Debugger is called from the Editor by typing:
BUG EEIED

This produces on the screen:

DEBUG
[l

The command to return to the Writer/Editor is:

X CEm

The debug commands are listed below. In the list, “mmmm” indicates that the
form of the command may include memory address(es). The actual methods of
specifying the memory address(es) and the default addresses are shown in the
examples given later in this section. If you use the commands with no
address (es), the Debugger assigns a default address(es):

DR Display Registers
CR Change Registers
D or Dmmmm Display Memory

G or Cmmmm Change Memory
Mmmmm Move Memory
Vmmmm Verify Memory.

L or Lmmmm List Memory With Disassembly

A Assemble One Instruction Inte Memory
Tmmmm Trace Operation

S or Smmmim Single-Step Operation
Gmmmm Go (Execute Program)

X Return to EDITOR 5
Pressing the key halts certain operations.

Debugging 35

36 Debugging

We now give several examples showing how to use the commands. In the
examples, the lines ending with are entered on the keyboeard. The other
lines show the response of the system, as displayed on the screen.
DR Display Registers
Example:

EDIT

BUC

DEBUG

DR

CASTR AN AV S BNP =R (RS S = R E
DEBUG
[

The registers and contents are displayed as shown. A is the Accumulator, X and
Y are the Index Registers, P is the Processor Status Register, and S is the Stack
Pointer.
CR Change Registers
Example:

EDIT

BUG

DEBUG
CR<12,34/5

DEBUG
L]

The effect of the command above is to set the contents of the registers A, X, ¥, P, s
and Sto 1, 2, 3, 4 and 5.

You can skip registers by using commas after the <. For example,

CR< B2

sets the Stack Pointer to E2 and leaves the other registers unchanged. Registers
are changed in order up to [EEIEN. For example,

CR<,34

sets the X Register to 84 and leaves the other registers unchanged.

D or Dmmmm Display Memory

Dmmmm, yyyy where yyyy is less than or equal to mmmm shows the content
of address mmmm.
Example:

DEBUG
D5000,0

5000 A9
DEBUG
L]

This shows that address 5000 contains the number A9.

If the second address (yyyy) is omitted, the contents of eight suceessive locations
are shown. The process can be continued by typing D GEIGN-
Example:

DEBUG

D5000

5000 A9 .03 18 E5 EO 4€ 231 91
DEBUG

D EEED

5008 18 41 54 41 52 49 20 20
DEBUG ;
[l

Dmmmm,yyyy where yyyy is greater than mmmm, shows the contents of
addresses mmmm to yyyy.
Example:

DEBUG
'D5000,500F

5000 A9 03 18 E5 FO 4C 23 91
500B. 18 41 54 41 52 49 20 20
DEBUG,

[

The display can be stopped by pressing the BREAK key.

€ or Cmmmm Change Memory,

Cmmmm < yy changes the contents of address mmmm to yy.

Example:

DEBUG
5001 <23

DEBUG
8l

The effect of the command is to put the number 23 in location 5001. A comma
increments the location o be changed.

Example:
DEBUG 7
©500B <21,EF
DEBUG
C7008B < 31,,,87 CEIE
DEBUG
] : 5

The first command puts 21 and EF in locations 500B and 500C, respectively.

Debugging 37

38 Debugging

Memory command, and you need not enter the address a second time with the G
command. The € command will default to the last specified address.

Example:
D5000

5000 A0'03 18 E5 F04C 23 91
C< A4

D5000
5000 AA 14 18 E5 FO 4C 23 91

DEBUG
I3

Mmmmm Move Memory:

Mmmmm <yyyy,zzzz copies memory from yyyy to zzzz to memory starting
at mmmm. Address mmmm must be less than yyyy or greater than zzzz. If the
origin and destination blocks overlap, results may not be correct.

Example:
DEBUG
M1230 < 5000,500F

DEBUG
[]

The command copies the data in location 5000-500F to location 1230-123F.
Vmmmm Verify Memory:

Vmmmm < yyyy,zzz compares memory yyyy to zzzz with memory starting.
mmmm, and shows mismatches.

Example:
DEBUG
V7000 <7100,7123
DEBUG
o1

The command compared the contents of 7100-7123 with the contents o
7000-7023. There were no mismatches.

Mismatches would be shown as follows:
7101 00 7001 22
7105 18 7005 10
L or Lmmmm List Memory With Disassembly

This command allows you to look at any block of memory in disasseml
form. ‘

Examples:

L7000 List a screen page (20 lines of code) starting at
memory location 7000. Pressing the key
during listing halts the listing,

L This form of the command lists a screen page start-
ing at the mstruction last shown, plus 1.

L7000, 0 These forms list the instructions at address
L7000, 7000 7000 only.
L7000, 6000

L.345, 567 This form lists address 345 through 567. Only the
last 20 instructions will actually be visible at the
completion of the response of the system.

The command Lmmmm differs from Dmmmm in that Lmmmm disassembles
the contents of memory.

Example:

EDIT
BUG

DEBUG
15000, 0
5000 A9 03 LDA #$03

DEBUG
L]

This example shows that the Debugger examined the contents of memory
address 5000 and disassembled A9 to LDA. Sinee A9 must have a one-byte
operand, the Debugger made the next byte (the contents of address 5001) the
operand. Therefore, although the debugger was only “asked” for the content of
location 5000, it showed a certain amount of intelligence and replied by show-
ing the instruction that started at address 5000.

To illustrate this further, the number 03 corresponds to no machine code
instruction, so the Debugger would interpret 03'as an illegal instruction, and
alert you to a possible error, as shown below.

Example:
DEBUG
L5001, 0
5001, 03 = 27
DEBUG

However, if the first instruction you wrote was LDA $8A, then you would have
obtained the following, apparently inconsistent, results while debugging:

Example: ;)
DEBUG
L5000, 00, A9 8A LDA #$8A

DEBUG ;
L5001, 0 8A TXA

Debugging 39

40 Debugging

Because the disassembler starts disassembling from the first address you
specify, you have to take care that the first address contains the first byte of a
“real” instruction.

A Assemble One Instruction Into Memory,

The DEBUGGER has a mini-assembler, that can assemble one assembly language
Instruction at a time. To enter the Assemble mode, type:

A CEMED

Once in the Assemble mode, you stay there until you wish to return to
DEBUGGER; which you may do by pressing (on an empty line).

To assemble an instruction, first enter the address at which you wish to have
the machine code inseried. The number that you enter will be interpreted as a
hex address. Now type “ < followed by at least one space, then the instruction.
You may omit an address if assembly 15 to be in successive locations.

Example:

EDIT
BUG

DEBUG

A

5001 <LDY $1234

5001 AG3412 Computer Responds.

<INY
5004 CB Computer Responds.

[eEmm

DEBUG
L1

Since the mini-assembler assembles only one instruction at a time, it cannot
refer to another instruction. Therefore, it cannot interpret a label. Gonse-
quently, labels are not legal ini the mini-assembler.

You can use the directives BYTE, DBYTE, and WORD.,

Gmmmm Gol (Execute Program)

This command executes instructions starting at mmmm. For example:

G7B00 Executes instructions starting at location 7B00.
: Execution continues indefinitely. Execution is
stopped by pressing the key (unless the pro-
gram at 7B00 tricks or crashes the operating system).

Tmmmm Trace Operation

This command has the same effect as G; nm, except that after execution o
each instruction the screen shows the instruction address, the instruction i
machine code, the instruction in assembly language (disassembled byt
debugger—nof necessarily the same as you wrote it in assembly language) anc
the values of Registers A, X, ¥, P and S.

The execution stops at a BRK instruction (machine code 00) or when you p:
the key on the keyboard.

Example:
DEBUG
T5000
5000 A9 03 LDA: #$03
A=03 X=02 Y=03 P=34 S=05
5002 18 CLC
A=03 X=02 Y=03 P=34 S=05
5003 E5 FO SBC $FO
A=03 X=02 Y=03 P=34 S=05
5005 4C 23 71 JMP $7123
A=03 X=02 Y=03 P=34 5=05
7123 00 BRK
A=03 X=02 Y=03 P=34 S=05
DEBUG

S or Smmmm Step Operation

This command has the same effect as T or Tmmuun, except that only one
instruction is executed. To step through a program, type S repeatedly
after the first command of Smmmm

X Exit
To return to the Editor type:

X CEE

Debugging 41

NOTES:

42 Notes

APPENDIX 1

ERRORS

When an error oceurs, the console speaker gives a short “beep™ and the error
number is displayed.

Errors numbered less than 100 refer to the Assembler Editor cartridge, as
follows:

ERROR
NUMBER
it The memory available is insufficient for the program to be assem-
bled.
2 For the command “DEL xx,yy” the number xx cannot be found.
3 There is an error in specifying an address (mini-assembler).
4. The file named cannot be loaded.
5 Undefined label reference.
6. Error in syntax of a statement.
7 Label defined more than once.
8. Buffer overflow.
o) There is no label or * before “=".
10. The value of an expression is greater than 255 where only one byte
was required.
alits A null string has been used where invalid.
12. The address or address type specified is incorrect.
i), Phase error. An inconsistent result has been found from Pass 1 to
Pass 2. ;
14. Undefined forward reference.
15 Line is too large.
16. Assembler does not recognize the source statement.
7 Line number is too large.
18. LOMEM command was attempted after other command(s) or instruc-
tion(s). LOMEM, if used, must be the first command.
{97 There is no starting address.
Errors

Errors numbered more than 100 refer to the Operating System and fhe Disk
Operating System. For a complete list of DOS errors, nefer to the DOS manual.

128 key pressed during an /O operation.

130 A nonexistent device specified for I/O.

132 The command is invalid for the device.

136 EOF. End of file read has been reached. This error may occur when
reading from cassette.

137 A record was longer than 256 characters.

138 The device specified in the command does not respond. Make sure
the device is connected to the console and powered.

139 The device specified in the command does not return an Acknowl-

edge signal.

Appendiz 1 43

44 Appendiz 1

140

143
144
145
146
162
165

Serial bus input framing error.
Serial bus data frame overrun.
Serial data checksum error.
Device done error.

Diskette error: Read-after-write comparison failed.

Funetion not implemented.
Disk full.
File name error.

APPENDIX 2

ASSEMBLER MNEMONICS
(Alphabetic List)

INC
INX
INY.
JMB
JSR
LDA
LDX
LDY
LSR
NOP
ORA
PHA
PHP
PLA:
PLP
ROL
ROR
RTI
RTS
SBG
SEC
SED
SEI

Add Memory to Accumulator with Carry

AND Acecumulator with Memory

Shift Left (Accumulator or Memory)

Branch if Garry Clear

Branch if Carry Set

Branch if Result=Zero

Test Memory Against Accumulator

Branch if Minus Result

Branch if Result # Zero i

‘Branch on Plus Result

Break

Branch if V Flag Glear

Branch if V. Flag Set

Clear Carry Flag

Glear Decimal Mode Flag

Clear Interrupt Disable Flag (Enable Interrupt)
Clear V Flag

Compare Accumulator and Memory
Compare Register X and Memory

@ompare Register ¥V and Memory
Decrement Memory:

Decrement Register X

Decrement Register Y

Exclusive-OR Accumulator with Memory
Increment Memory

Increment Register X

Increment Register Y

Jump to New Location

Jump to Subroutine

Load Accumulator

Load Register X

Load Register ¥

Shift Right (Accumulator or Memory)

No Operation

OR Accumulator with Memory.

Push Accumulator on Stack

Push Processor Status Register (P) ontol Stack
Pull Accumulator from Stack

Pull Processor Status Register (P) from Stack:
Rotate Left (Accumulator or Memory)
Rotate Right (Accumulator or Memory)
Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Garry Flag

Set Decimal Mode Flag

Set Interrupt Disable Flag (Disable Interrupt)

Appendiz 2 45

46 Appendixv 2

STA
STX
STY
TAX
TAY.
TSX
TXA
TXS
TYA

Store Accumulator

Store Register X

Store Register Y

Transfer Accumulator to Register X
Transfer Accumulator to Register ¥
Transfer Register SP to Register X
Transfer Register X to Accumulator
Transfer Register X to Register SP
Transfer Register Y to Accumulator

APPENDIX 3

SPECIAL SYMBOLS

Below we give a list of special symbols that have a restricted meaning to the
Assembler. You should avoid using these symbols as a matter of course. Most
attempts to use these symbols in any but their special sense will result in errors.
They may be used, without their special meaning, in comments and in the
operands of memory reservation directives.

o The semicolon is used to indicate the start of a comment. Everything
between the semicolon and RETURN appears in the listed form of the
program and is ignored by the Assembler. When comments take more
than one line, start each new line with a semicolon.

. The # sign is used as the first symbol of an immediate operand, as in
LDX #24.

$ The § sign is used before numbers to signify that they are to be interpreted
as hex numbers. For example, LDX #884.

* The asterisk is used to signify the value of the current location counter. Eor
example, the instruction in line 50 gives the symbol HERE a value edual to
5 or more than the number in the current location counter:

50, HERE=*+5

Examiple:

187 * =$911
19¢ RTES
Q= SR
PASITAVCE

‘When this example is assembled, line 18 causes the location counter to be $0911,
RTS is placed in location $0911. line 20 causes the location counter to be
increased from $0912 to $0921, and TAX is placed in $0921. This leaves 15
empty bytes between the RTS and the TAX.

The asterisk also signifies multiplication (see Appendix 6). The Assembler uses
the syntax of the statement to distinguish the two meanings of the asterisk.

Register names:

Accumulator

X Register

¥ Register

Stack Pointer

Processor Status Register

NGRS RS

Appendix 3 47

~
&
>
<8
>
<

'v3
JHL 40 S1ig H3AHO HOIH 8 FHL DNIZE SLINS3Y FHL ‘NOILYOOT
037 39Vd LXaN FHL 40 SINTINOO IHL OL d3day S| NOLLVH3d0
SIHL WOHH AHHVYD JHL 'va 3HL 40 Slig 8 HIAHO MOT] HL ONI
39 11nS3aY 3HL ‘X3ANI A FHL OL d3aay 34V NOILVOOT AHOWEW
SiHL 40 SINILNOD FHL 'OH3Z 39Vd NI NOILY3O1 ¥ OL SLNIOd
NOILONYLSNI ZHL 40 31A8 GNODES FHL — aIXIANI LOIHIGN! - A (@D

‘Slig H3a"o
HOIH 8 IHL SNIVLNOD FLAg 1X3N FHL V3 3HL J0 S1ig H3GHO MOl
8 FHL SNIVLNOD HOIHM OH3Z 39Yd NO NOILYD01 V Ol SINIOd
SLINSIH THL ‘AHHYO FHL BNIAHYOSIA XIANI X FHL OL d3aaVv Sl
NOILLONYLSNI FHL 40 JLAQ ANODSS IHL — LOIHIGNI GIXIANT < (X ‘anD

‘NOILONYLSNI IHL 40
J1Ad QHIHL ANY GNO23S 2HL OL X3ANI IHL BNIAAY A9 G3NHOL
S| Ss3Haay FAILOFH43 IHL — aIXAANI ILATOSSY A 'S8V X ‘Sav

‘SOHHZ Sl V3 IHL
40 31LAQ HIAHO HOIH IHL V3 IHL 40 LA HIGHO MOT IHL WHO
0L (@3ddOHA S AHHYO) X2ANIFHL 01 a3aay S| NOILONHLSNI IHL
40 FLAE ANOD3S FHL — QIXIANI 35Vd O¥3Z - A ‘FOVd Z - X 3DVd 2

- HOLYINWNODY.
JHL NO DNILYHIO NOILONULISNI FLAE INO — HOLVINWADDY - 'V

‘OH3Z 30V S1i8
HIAHO HOIH 8 IHL '$SS3HAAY FAILDIJLT FHL H0 S1i8 HIAHO MOT
8/3HL SNIVLNOO 31A8 ANODAS — DNISSIHAAY FOYd O¥3Z - 3BVd Z

“(v3) ss3yaay IAILO3443
JHL 40 SLIg H3AHO HBIH 8 SHL SNIVANOO JLAS GHIHL 3HL 'SS3Hd
Ay 3AIL93443 JHL J0 S1iF HIQHO MO 8 IHL SNIVINGD NOIL
-ONHLSNI FHL 40 TLAS ANOOIS FHL — BNISSIHAAY FLANOSAV - SBY.

‘NOILOAELSNI FHL 40 I 1LA9 ANGI3S
IHL NI GINIVINOO S| ONVHIHO0 IHL — DNISSTHAAY ILYIaZINNT - WL

4 OxCsme | x'eavaes | a3 5 e

4 mm<.u,x_ 8ay.08S ,? $8Y-Xd) 40N WH08S

0 XS | xsavaRs 5 LAy

2 SEV-030 SAV-dHD SEV:ALD Xa0 Wi

[Ssaan [s 1 iisavan | i Sei |l L A savvm

v SaY:-vo1 SEY-AQT XvL L)

Ul X v i) x| Ssavis

8 S8V XIS SBY:VIS SAV:ALS 4248

v B G X sy ! i 2 ‘Savi00y

i SaV-HoH say-ay ON-diNr Y404 WH0aY

§ XSEVESTH X sevie g A ayaoE

¥ SBY-UST S3Y-403 SAV-dAP YEsT WiiH03
it S | sadony 7 5 AoV |

(4 SEVI0H SaY-ONY. SaV-L19 Y04 WNHIRY
LS S esase) Xosevme |0 A SEY-¥ii0

0 SaY-YE0 ¥asy WiEYEO
asi

4 3 a 3 Ll A 6 1
087

oo xiesmron)| e 7S, A eres | %

steg'zon | odea‘zoss| slea'2Xa0 X 0N0S wwrxa| 3
xSz X e Zan) A'arang oo
abeazo30| el zawd| 9 ZA& X Q). ek | 2
AT | x s | x et zAay Alawve 2|8

3bed \ZY01 o824 ‘Zyu1 a6rd 7401 WREXOT X ‘ONEYT AT Y

| ae s ke TS | xR iz s A'neVis]
shed'zxis| abeazvig| abedzAls X loNtvis 8

: X ioNeY B T

slied ‘7:404 X “ONE00Y. g 9

Hix s Vowdes | oy
sieg X ‘w03 | i v

7 kmeoRel iR

#62d '210¢ 3024 ZONY. abrd 718 X "ONEOHY usr| 2
TR A | e 2V £'oevie Wl
abed Z18¥ 8024 'Z:Y40: X OHEVED. Wl o
Gl

L 9 s v £ z L 0

057

SAONVIdIdO ANV SOINOWAN Jd0d dO
NIANOJISTYHOD HILIM SLIDIAd XdH JO 414V L

D

NOTES

Appendiz 4 49

48 Notes

NOTES:

50

Notes

APPENDIX 5

EXPRESSIONS

When an instruction or directive calls for a number in the operand, the number
may be given as an “expression,” the number used being the value of the
expression. An expression is really just a formula.

Expressions are made up of operators and terms. Terms are either numbers or
labels which stand for numbers. An' expression containing a label term that
does not have a numerie value will be flagged as an error.

There are five operators; four are arithmetic, and one is logical.

Addition 1s signified by the sign
Subtraction is signified by the sign
Multiplication 1s signified by

Division is signified by
Logical AND! is signified by

GRS e

Expressions must not contain parentheses.

Expressions are evaluated from left to right.

Examples:

100
200
300
400

100

600
610
620
630

==$90+ 1007

JMP 3+2*25%4/6-3
JMP 0097

JMP $0061

LDA #NUMI +NUM2

LDA LABEL & $00FF
STATSCE

LDA LABEL/256

STA $CD.

. These instructions are equivalent.

NUM1 and NUMZ must be defined some-
where in the program. The instruction
loads the Accumulator with the sum of
the numbers in the locations NUM1 and
NUM2.

This yields the low order byte of the value
of LABEL,

This yields the high order of byte of the
value of LABEL.

Appendin 5. 51

NOTES:

52 Notes

APPENDIX 6

DIRECTIVES

. OPT Operand

. TITLE “NAME”

. PAGE ‘MESSAGE”

. TAB ni,n2.n3

. BYTE a,b...n

SBNGIE S ARONES

. DBYTE a, b,..n

. WORD a, b,...;n

AB =Expression

* = Expression

. IF Expression
. LABEL

. END

specifies an option. Operand can be LIST or NOLIST,
OBJ] or NOOBJ, ERRORS or NOERRORS, EJECT or
NOEJECT. (Default options are LIST, OBJECT, ERRORS,
and EJECT.)

causes NAME to be printed at the top of each page.

produces a blank space in the listing, then causes
MESSAGE to be printed after NAME.

controls the spacing of the fields of Op Code
Mnemonic, Operand, and Comment as they appear in
the listing.

places in successive memory locations the values of the
expressions a, b, ..., nn (one byte for each value).

places in successive memory locations the ATASCII
values of A, B; ..., N.

places in successive pairs of memory locations the
values of the expressions a, b, ..., n (two bytes for each
value, high byte first).

places in successive pairs of memory locations the
values of the expressions a, b, ..., n (two bytes for each
value, low byte first).

makes the Label AB equal to the value of the expres-
sion (up'to FFEE hex).

makes the Program Counter equal to the value of the
expression (up to FFFE hex).
assembles following code, up to . LABEL, if and only: if

expression evaluates to zero.

indicates the end of the program to be assembled.

Appendix 6 53

APPENDIX 7

ATASCII CHARACTER SET
AND HEXADECIMAL TO
DECIMAL CONVERSION

NOTES:

e e e Sl
U NN o P o $% (©
SO s e e S
FS ¥ & FS S J Fe $ &
0 0 ﬂ 13 D = 26 1A a
1 1 C | 14 e il 27 1B E |
2 2 &) 15 F w | 28 i
3 3 16 10 B 29 1D
4 4 E' 17 11 ﬂ 30 1E
5 5 5 | 18 D o S
6 @ 19 13 32 20 Space
7 7 20 14 33 21 !
8 8 "d] 21 b= 34 22 2
9 9 8 > 16 35 23 #
10 A 23 N 505 24 $
11 B &) 4 g 37 25 %
12 G 25 19 38 26 &

54 Notes Appendic 7 55

40

41

42

43

45

46

47

48

49

50

51

52

58

54

56 Appendiz 7

68

89

90

Il

92

94

95

96

97

98

59

100

101

102

59

5A

5B

56

5D

SE

it

60

61

64

65

66

ca

105

106

107

108

109

110

Lt

112

113

114

16l

116

L7

118

68

69

6A

6B

6C

6D

6E

6F

70

7k

72

k

3001

u

v

121

122

123

124

125

126

127

128

129

IE10)

131

132

1353

134

76

79

7A

7B

7D

7E

S

80

81

82

83

84

85

86

W

(inverse characters
begin)

Appendix T 57

231 E7 240 EO
232 E8 241 il
233 E9 242 1572
234 EA | 243 ES
235 EB ; 244 F4
236 EC 245 IS
237 ED 246 F6
256 EE 247 37
239 EE 248 E8
Notes:

1. ATASCII stands for ATARI ASCIIL. Letters and numbers have the same values as thoese in ASEIL, but

some of the special characters are different.

250

251

252

258

254

255

2. Except as shown, characters from 128-255 are reverse colors of 1 to 127.

3, Add 32 to upper case eode to get lower case code for same lefter.

4. To get ATASCII code, tell computer (direct mode) to PRINT ASC (=) Fill blank with letter, -

character, or number of code. Must use the quotes!

G0 Appendiaz 7

EA

EB

B

FD

EE

B

L1
El
L3

(Buzzen)

(Delete
character)

(Insert
character)

- APPENDIX 8

REFERENCES

ATARI PUBLICATIONS

Obtainable from your ATARI dealer, or ATARI Consumer Division, Customer
Support, 1195 Borregas Avenue, Sunnyvale, CA 94086

ATARI 400™ Operator’s Manual CO14768
ATARI 800™ Operator’s Manual CO14769
ATARI 810™ Operator’s Manual €014760
ATARI 815™ Operator’s Manual 3 CO16377
ATARI Disk Operating System II Reference Manual

ATARI 410™ Operator’s Manual €0O14810!

OTHER PUBLICATIONS

6502 Progranuming Manual
SYNERTEK, 3050 Coronado Drive, Santa Clara, CA 95051 or
MOS Technology, 950 Rittenhouse Road, Norristown, PA 19401

6502 Assembly Language Programming by Lance Leventhal
Osborne/McGraw-Hill, 630 Bancroft Way, Berkeley, CA 94710

Programming the 6502 by Rodney Zaks
Sybex, 2020 Milvia Street, Berkeley, CA 94704

Appendia 8 61

NOTES:

62 Notes

APPENDIX 9

USING THE ASSEMBLER CARTRIDGE

TO BEST ADVANTAGE

The Assembler Editer cartridge is designed to: support intermediate-level
assembly language software development. It is good enough in this funetion to
be used by ATARI's own programmers for some software development.

The Assembler is powerful and it can do a great deal, but it is not a professional
software development system. It is not well suited for development of large
assembly language programs, A good rule of thumb is: take the amount of RAM
you have in your system and divide by ten tofind the largest amount of object
code you can comfortably develop with this cartridge. Thus, an ATARI Personal
Computer System with 16K of RAM can be used to develop object code
programs up to about 1600 bytes in size. Of course, you can stretch your
memory by eliminating all explanatory comments and using very short labels.
This will allow you to fit in much more code, but it will make your program
difficult to revise at a later time.

Our recommendation is that this cartridge is best used to develop machine
language subroutines that enhance the speed and power of BASIG programs.
Assembly language complements BASIC very well; the combination of BASIC
and machine language is extremely powerful. You can unleash almost all of the
power inside your ATARI Personal Computer System with this combination.
You should use BASIC for most of your programming; it is easy to write and
debug. You should use assembly language only when necessary. There are five
applications of machine language that are particularly appropriate:

® To provide certain special logical operations not readily available from
BASIC

® To generate special sound effects that BASIC is too slow to generate
e To generate high-speed graphics and animation
® To utilize the interrupt capabilities of the machine

® To accomplish high-speed complex logical calculations and manipulations

Most of these applications are situations that call for high speed;in general, the
primary advantage of machine language is its higher speed, Machine language
averages about ten times faster than BASIC and in special cases, can be up to a
thousand times faster. We do not recommend using machine language for
floating point arithmetic or for I/O to and from peripherals (except the screen).
In general, one should use machine language only when its speed advantages
outweigh the difficulties of programming in assembly langnage.

Extensive use of assembly language redquires a thorough knowledge of the
layout and operating system of the host machine. Unfortunately, the ATARI
Personal Gomputer System is far too complex to cover adedquately in a brief
appendix. We therefore provide four commented sample programs: which

Appendiz 9 63

64 Appendiz 9

show how to execute some of the most commonly used functions. These
programs are meant only for demonstration purposes; they certainly ‘do not
exercise the full power of the machine. You may wish to enhance them, adding
whatever features you desire. In this way you will learn more about the ATARI
Personal Computer System.

All four programs have been written to reside on page 6 of memory. These 256
bytes have been reserved for your use. On page zero, only 7 bytes have been
reserved for your use by the BASIC eartridge; they are locations $CB through
$D1 (208 through 209). Locations $D4 and $15 (212 and 213) are also usable; they
are used to return parameters from machine language routines to BASIC
through the USR function. Furthermore, locations $D6 through $F1 are used
only by the floating point package; you may use them from BASIC USR calls if
you do not mind having them altered every time an arithmetic operation is
performed. If your program runs only with the Assembler Editor cartridge and
not the BASIC carfridge you may use zero page locations $B0 through $CF. You
will have to be very sparing in your use of page zero locations, as nine safe
locations will not take you far. It is not wise to usurp other locations on page
zero, as they are used by the operating system and BASIC; there is no way to
know if you thereby sabotage some vital function and crash the system until it
is too late. For the moment, we recommend that you limit yourself to programs
that fit onto page 6 and use less than 9 bytes of page zero. The four sample
programs meet that restriction; later we will show you how to make larger
programs with BASIC.

Qur first sample program is very simple: it takes two 16-bit numbers, exclusive
OR’s them together, and returns the resulting 16-bit number to BASIC. Tt is only
17 bytes long and uses only 4 bytes of page zero. We will use it as a vehicle to
show you the rudiments of interfacing machine language to BASIC. Here's how:
First, type in the program with the Assembler Editor cartridge i place. Make
sure that you have typed it in properly by assembling the program (the
command ASM) and verifying that no errors are flagged to you. If it squawlks
unpleasantly, you have offended its delicate sensitivities; note the line number
where the error occurred (CONTROL-1 is a handy way to stop the listing so you
can see what happened). Then list the offending line and correct the typo. You
may rest assured that the program as we list it will indeed assemble without
errors; if you type it in exactly as listed it will work fine. Now assemble the
program with the object code going to your nonvolatile storage medium (either
diskette or cassette). If you have a disk drive, type in:

ASM,,#D:EXCLOR.OB]
If you have a Program Recorder, type in:

ASM, ,#C:
Follew normal procedures for using these devices. After the object code is
stored to your diskette or cassette, open the cartridge slot cover and replace the
Assembler Editor cartridge with the BASIC cartridge. Close the cover and when

you see the READY prompt, load the program from diskette or cassette tape into
RAM.

If you have a diskette, type DOS to call DOS, then type L to load a binary file.
‘When it asks what file fo load, respond with:

EXCLOR.OB] Eisiie

When it returns the SELECT ITEM prompt, type B to return to BASIC. If
you have a cassette, type in CLOAD and follow the normal procedures for
loading from cassette tape. When the machine language program is fiilly loaded
and you are back in BASIC’s READY mode, you are ready touse your program.
Your program begins at address $0600, or 1536 decimal. Confirm this by the
command:

PPEEK(1536)

The computer should respond with the value 104, which, if you care to cipher it
out, is the opcode for the PLA instruction at the beginning of the program. If it
doesn’t, you blew it; start backtracking to figure out where you went wrong. If
it comes up correct, then try this command:

A=USR(1536, 1, 3): ?A

The computer should respond by printing the value 2, because 1 exclusive
OR’ed with 3 eduals 2. If you are not familiar with the exclusive OR operator,
look it up in any beginning book on assembly language programming. You now
have a new function to use. The first parameter is the address of the machine
language routine. The second and third parameters are the two numbers to be
exclusive OR’ed together. They must be integers between 0 and 65535.

Our second sample program generates notes with controllable attack and decay
properties, You may have toyed with the SOUND command in BASIC; if so,
perhaps you have noticed that the sounds you can produce with BASIC are
somewhat primitive. With assembly language it is easier to produce higher
quality sounds. With this routine you can come much closer to the ideal by
directly specifying the attack and decay characteristics of each note. It only con-
trols one sound channel, and its algorithm is very simple, so there is plenty of
opportunity for improvement. Four parameters are used: the frequency, the at-
tack time, the peak plateau time, and the decay time. All three times are
specified in unitsof 1.6 milliseconds. Using the same procedure as before, enter
the program with the Assembler Editor cartridge, assemble it to the diskette or
cassette, save it, switch to BASIC, and load the machine language code. Then run
the program with:

A =USR(1536, 50, 10, 50, 200)

Make sure the volume on your television set is turned up and you will hear a
note with a very short attack, a short plateau, and a long decay. Experiment
with different values of the last four parameters to see what effects can be
'generated with this technique. Of course, do not change the first parameter
(1536) or the program will almost surely crash.

Our third sample program is a much longer affair which generates a pleasing
animated pattern on the screen. If you study it earefully you will learn a great
deal about the display system of your ATARI Personal Computer System. This
program only, seratches the surface. There is much more to the ATARI display
system than is evident here. Follow the same procedure to set up the program as
before; you activate the program with:

GR. 19: A =USR(1536)
There is no termination point in the program; you must press the key

to terminate the program. After you press the key, the program wrill
still be intact and usable.

Appendiz 9 65 :

66 Appendiz 9

The last sample program demonstrates a very useful capability of the ATARI
Personal Computer System—the display list interrupt. Perhaps you have been itch-
ing to have more than five colors on the screen. With display list interrupts you
can have up to 128 colors, Here’s the idea behind it: the ATARI display system
uses a display list and display memory. The display list is a sequence of instruc-
tions that tell the computer what graphics format to use in putting information
onto the screen. The display memory is the information going onto, the screen.
The address of the beginning of the display list can be found in locations /560 and
561 (decimal).The address of the beginning of the display memory can be found
in locations 88 and 89 (decimal). Wondrous things can be done by changing the
display list; this program demonstrates only one of the capabilities of the
display list system. If bit 7 of a display list instruction is set (equal to 1), then the
computer will generate a non-maskable interrupt for the 6502 when it en-
counters that display list instruction.

If we place an interrupt routine which changes the color values in the color
registers, the color on the screen will be changed each time a display list inter-
rupt is encountered. This program consists of two parts; an initializing routine
which sets up the display list interrupt veetors, sets all of the display list instruc-
tions to generate display list interrupts, and lastly, enables the display list inter-
rupts. The second routine actually services the display list interrupts by chang-
ing the color value in the color registers every time it is called. This routine is
designed to operate in GRAPHICS 5 mode; it will put all 128 colors onto the
sereen. (Is that enough for you?) To see it in action, follow the familiar pro-
cedure for entering, assembling, saving, and loading the program. Then key in
the following BASIC immediate instruction:

GR. 5: FOR I= 0 TO 3: COLOR I: FOR J=20*I TO 20*I+19: PLOT J, 3:
DRAWTO J, 39: NEXT J: NEXT I: A=USR(1536)

We hope that these four sample programs have given you a clearer idea of how
your ATARI Assembler Editor cartridge might be useful. There are some more
advanced techniques for getting even more use out of your cartridge. The first
problem many programmers encounter. arises when they attemnpt to write a
program larger than 256 bytes long. It will no lenger fit onto page 6 and the pro-
grammer must find a new place to put the program. The problem is made
worse by the fact that the Operating System and BASIC use memory all over the
address space. The programmer will have a hard time finding a safe place in
memory where the machine language routine will not be wiped out by BASIC
or the Operating System. There are a number of solutions to this problem; each
solution has advantages and disadvantages. We recommend the following ap-
proach, which is diffictlt to understand but is also the most useful and safest
route. What we are going to do is store the machine language program inside a
BASIC program and then touch it up so that it will' run from anywhere in
memory,

We begin by writing an assembly language program with the Assembler Editor
cartridge. Originate the program near the top of your available memory. For ex-
ample, if you have 2K of abject code and a 16K machine, originate the program
at the 12K boundary with the directive* =$3000°. This leaves 4K of space—2K
for your program, 1K for a GRAPHICS mode 0 display, and 1K of extra space for
good measure. Now go through the procedure of assembling the object code to
diskette or cassette, changing the cartridges, and loading the object code into
memory. Calculate the decimal addresses of the beginning and end of your ob-
Ject code. Let us say that your program is 2479 bytes long. It begins at $3000 or
12288 decimal, soithe last byte is at 14466. Print PEEK(12288) and PEEK(14466) to
verify that these addresses really do contain the first and last bytes of your pro-
gram. Remember, the computer will print the results in decimal, not hex-
adecimal; so you will have to convert in your head or with the computer.

Now start writing a BASIC program, begin with:
2 DIM E$(2179)
Then add this subroutine (which you can delete later):

25000 A =90*]+1:B=A +89: IF B>LIMIT THEN B=LIMIT:>*LAST LINE”
250107)+5; E$C; A5, B,”) = ;CHR$(34);

25020 FOR 1-A TO B:?“(Z%) B *;CHR$(PEEK)] + C));:NEXT I

25030 ?CHR$(84);]=] +1:RETURN

Here the symbol means that you press the escape key twice. Now type
in the following direct comamands:

J=0
G=12287
LIMIT = 2179

The value of C is the address of the byte before the first byte of your program.
The value of LIMIT is the length of your object program. Now type GOSUB

The computer will print a BASIC line onto the screen. It will look very
strange—all sorts of strange characters inside a string. They are the screen
representation of your object code. To make this line part of your BASIC prgram
simply move the cursor up to the line and press fiEEnS. You might reassure
yourself that you were successtul by entering:

LIST 5

and verifying that line 5 really did go in. Now type GOSUB; 25000 again
and another line will be printed. Enter this one the same way as before.
Continue this process of printing and entering lines until the entire object
program has been encoded inside BASIC statements. You will know you have
reached this point when the computer prints “LAST LINE” onto the screen.

There is one possible hitch with this process. If you have a hex code of $22
(decimal value 34) anywhere in your code it will be put onto the screen as a
double duotation mark. This will confuse the BASIC interpreter, which will
give you a syntax error when you try to enter the line: If this happens, carefully
count which byte is the offender and write down the index of the array which
should contain the double duetation mark. Then go back and replace the
offending quotation mark with a blank space; that will keep the BASIC
interpreter happy. Make note of all such occurrences. When you are done
entering the characters, type in a few more lines like:

30 E$(292, 292) = CHR$(34)

This line puts the double quotation mark into the 292nd array element by brute
force. It should come immediately after the lines that declare the string. You
should have a line similar to this for each instance of the double quotation mark.
Make sure that you have counted properly and put the double quotation marks
into the right places.

Now your object program is a part of the BASIC program. You can SAVE and
LOAD the BASIC program and the object program will be saved and loaded
along with it—a great convenience. You can run the object program by running
the BASIC program and then executing the command:

Appendiv 9. 67

A=USR(ADR(E$)) 70 ;5 WHERE
oS 5 . : ? 80 5 E IS'THE FREQUENCY
But there is still another possible hitch. The 6502 machine language code is not 90 . A IS THE ATTACK TIME

fully relocatable; any absolute memory references to the program are certain to
fail. For example, suppose your program has a jump-to-subroutine (JSR)
instruction that refers to a subroutine within the object code. This instruction

0100 ; P IS THE PEAK TIME
0110 ; D'IS THE DECAY TIME

would tell it to jump to a specific address. Unfortunately, your program has no 01200 5
way of knowing at what specific address that subroutine is stored and thus will 0130 ; ALL TIMES GIVEN IN UNITS OF 1.6 MILLISECONDS
almost certainly jump to the wrong address. The problem arises from the fact 0000 0140 = $0600
that BASIC might move your object program almost anywhere in memory. D200 0150 AUDF1 = $D200 AUDIO FREQUENCY REGISTER
D201 0160 AUDC1 = $D201 AUDIO CONTROL REGISTER
There are several solutions to this problem. The simplest solution is to write 00CE 0170 ' ATTAGCK e $CC ATTACK TIME
fully relocatable code; that is, code with no JMP’s, no JSR’s and no data tables 00CD 0180 PEAK 4 $CD PEAK OR PLATEAU TIME
enclosed within it. Put all data tables and subroutines ento page 6. If you still 00GE 0190 DECAY = $CE DECAY TIME
need more space, put very large data tables into the BASIC string and point to 0600, 68 0200 NOTE PLA
them indirectly. Replace long JMP’s with a bucket brigade of branch 0601 €8 0210 LA
instructions. These techniques should allow: you to write large machine b 0959 A
nahsopies 0603 8DOOD2 0230 STA. AUDF1 SET FREQUENGY
0606 68 0240 PLA
Eranple 0607 85CC 0250 SEA SR SET ATTACK TIME
10 it 0608 68 0260 PLA
20 5 ROUTINE EXCLOR 060A 68 0270 PLA
30 ; PERFORMS EXCLUSIVE OR OPERATION ON 060B 68 0280 PLA
40 ;s TWO BYTES PASSED THROUGH THE STACK 060C 856CD 0290 STA PEAK SET PEAK TIME
50 s PASSES RESULTS DIRECTLY THROUGH USR FUNGTION 060E 68 0300 PLA
60 5 060F 68 0310 PLA
70 5 0610 85CE 0320 STA DECAY SET DECAY TIME
0000 80 ¥= $0600 0330
00CC 90 "TEMPL = $€C TEMPORARY HOLDING LOCATION 0340 ; ATTACK LOOR
00CD 0100 TEMPH = $CD TEMPORARY HOLBING LOCATION Q3508
00D4 0110 RESLTL = $D4 ADDRESS EOR PASSING RESULTS 0612 A9AQ 0360 LDA #3A0 START WITH ZERO VOLUME
00D5 0120 =~ RESLTH = $D5. ADDRESS FOR PASSING HIGH RESULT 0614 8DOID2 0370 -ATLOOP STAM L ATIDEE.
0600 68 0130 EXCLOR PLA 0617 A6CE 0380 LDX ATTACK
0601 68 0140 PLA 0618 204106 0390 JSR DELAY
0602 85CD 0150 STA: TEMPH SAVE HIGH BYTE 061G 18 0400 CLC
0604 68 0160 PLA 068D 6901 0410 ADC #8501
0605 85CC 0170 STA TEMPL SAVE LOW BYTE 061F @9BO 0420 CMP #$BO
0607 = 68 0180 PLA 0621 DOF1 0430 BNE ATLOOP
0608 45CD 0490 EOR TEMPH = PERFORM HIGH EXCLUSIVE OR 0440 ;
060A 85D5 0200 STA RESLTH STORE RESULT 0450 ; PEAK LOOP
960€C 68 0210 PLA 0460
060D 45CC 0220 EOR TEMPL « PEREORM LOW EXCLUSIVE OR 0623 A90E 0470 LDA = #$0E
060F 85D4 0230 STA RESLTL STORE RESULT 0625 ABCD 0480 PKLOQOP LDX PEAK
0611 60 0240 RTS WHAT COULD BE SIMPLER? 0627 204106 0490 JSR DELAY
0612 0250 .END 0624 38 0500 SEE
062B, E901 0510 SBC #5014
Example 2. 062D DOE6 0520 BNE PKLOOP
0530
10 ; 0540 ; DECAY LOOP
20 5 ROUTINE NOTE 0550 ;
30 5 GENERATES NOTES WITH CONTROLLABLE ATTACK AND DECAY 062F A9AF 0560 LDA #SAF
40 5 TIMES 0631 8D01DZ 0570 DCLEOP . STA AUDCL
50 5 CALL FROM BASIC WITH COMMAND: 0634 JAGGE 0580 LDX DEGCAY
60 ; A=USR(1536, F, A, P, D) 0636/ 204106 0590 JSR DELAY
68 Appendiz 9 Appendiv 9 69

0639 38 0600 SEC 060D 85CD 0380 SIHASEXTOC STORE THE RESULT
063A E901 0610 SBC #$01 060F 38 0390 SEC
063C C99F 0620 CMP #$9F 0610 E905 0400 SBC #$05 GET X-DISTANGE FROM CENTER
063E DOF{ 0630 BNE DCLOOP 0612 1005 0410 BPL XA IS IT POSITIVE OR NEGATIVE?
0640 60 0640 RTS 0614 49FF 0420 EOR #$FF IF NEGATIVE, MAKE IT POSITIVE
0650 ; 0616 ‘18 0430 CLE
0641 A013 0660 DELAY LDY #$13 0617 6901 0440 ADC #3501
0643 88 0670 DELAY2 DEY 0619 85CF 0450 XA STA DIST SAVE THE ABSOLUTE VALUE
0644 DOED 0680 BNE DELAY2 061B ADOAD2 0460 TRYAGN LDA RANDOM GET ANOTHER RANDOM NUMBER
0646 CA 0690 DEX 061E 291F 0470 AND) #$1F MASK OFF LOWER 5 BITS
0647 = DOE8 0700 BNE DELAY 0620 €918 0480 GMP #$18 MUST BE SMALLER THAN 24
0649 60 0710 RTS 0622 BOF7 0490 BCS ~ TRYAGN (BECAUSE THERE ARE ONLY 24 ROWS)
064A 0720 .END 0624 85CE 0500 STA" YLOG STORE THE RESULT
0626 38 0510 SEC
0627 E90C 0520 SBC #%0C GET Y-DIST FROM CENTER OF SCREEN
Example 3. 0629 1005 0530 BPL XB IS IT POSITIVE OR NEGATIVE?
10 5 062B = 49FF 0540 EOR #$FF IF NEGATIVE, MAKE IT POSITIVE
20 5 062D 18 0550 ©Ie,
s ROUTINE SPLAY 062E 6901 0560 ADGC #5041
40 5 PUTS A PRETTY DISPLAY ONTO THE SCREEN OBZ08 1%
50 ; GALL FROM BASIC WITH THE EOLLOWING COMMANDS 0580 3 NOW CALCULATE THE COLOR TO PUT INTO THIS POSITION
60 5 GR. 19: A =USR(1536) 0590 ;
70 s EXIT PROGRAM WITH & 0630 18 0600 XB (ALfE
80 ; 0631 65CE 0610 ADG DIST TOTAL DIST FROM CENTER OF SCREEN
90 5 0633 65D0 0620 ADC PHASE COLOR PHASE OFFSET
0100 *= 30600 0630
00CC 0110 TEMP = $cC TEMPORARY LOCATION 0640 : BITS 3 AND 4 NOW GIVE THE COLOR TO USE
00CD 0120 XLOC = $CD HORIZONTAL POSITION OF PIXEL 0650 ;
00CE g 0130 YLOG = $CE VERTICAL POSITION OF PIXEL 0635/ 291F 0660 AND #$1F MASK OUT BITS 5, 6, AND 7
00CE 0140 DIST = $CF DIST. OF PIXEL FROM SCREEN CENTER 0637 4A 0670 TSRESHIA
00D0 0150 PHASE = $D0 COLOR PHASE 0638 4A 0680 ESRUGA
00D1 0160 COLOR = $D1 COLOR CHOICE 0639 4A 0690 ISR A SHIET OFF BITS 0, 1, AND 2
0058 0170 SAVMSC = $58 POINTER TO BEG. OF DISPLAY MEMORY: 063A 85D1 0700 STA COLOR STORE RIGHT-JUSTIFIED RESULT
02G4 0180 COLORO = $02€4 LOCATION OF COLOR REGISTERS OO SN
D20A 0190 RANDOM = $D20A HARDWARE RANDOM NUMBER LOCATION » 0720 ; NOW WE MUST DETERMINE WHICH OF THE 4 PIXELS
0600 68 0200 SPLAY: PLA POP A ZERO FROM STACK 0730 ; IN THE BYTE GET THE COLOR
08601 8500 0210] STA PHASE STORE IT IN PHASE 0740, ;
0603 AA 0220 TAX SET COUNTER 063C ADOAD2 0750 LDA RANDOM
2601 063F 2903 0760 AND #3503 GET A RANDOM NO. BETWEEN 0. AND. 3
0240 ; THIS IS THE MAIN PROGRAM LOOP 0641 A8 0770 DAY USE IT AS A GOUNTER
0250 ; FIRST WE RANDOMLY CHOOSE THE SCREEN LOC. TO MODIFY 0642 EOO7 0780 BEQ NOSHFT SKIP AHEAD IF IT IS 0
0260" ; SEREEN IS 40 PIXELS HORIZONTALLY BY 24 PIXELS VERTICALLY 0790 3
0270 3 WITH 4 HORIZONTALLY ADJAGENT PIXELS PER BYTE 0800 ; SHIFT OVER TWICE FOR EACH STEP IN ¥
0280 ; HENCE THERE ARE 10 BYTES PER HORIZONTAL ROW: 0810 . ;
0290 3 AND 24 ROWS FEOR A TOTAL OF 240 BYTES 0644 06D1 0820 SHETLP ASL COLOR
0300 ; TO REPRESENT THE SCREEN 0646 06DA 0830 ASL COLOR
0310 ; 0648 88 0840 DEY
0320, ' 0649 DOF9 0850 BNE SHFTLP
O380N: 0860
0604 ADOAD2 0340, BEGIN LDA = RANDOM GET A RANDOM NUMBER 0870 ; NOW WE MUST CALCULATE WHERE IN MEMORY TO PUT OUR
0607 290F 0350 AND' #$0F MASK OFF LOWER NYBBLE 0880° 3 SQUARE
0609 C90A 0360 CMP. #$0A. MUST BE SMALLER THAN 10 064B AS5CE 0890 NOSHFT LDA YLOC GET VERTICAL POSITION
060B BOE7 0370 BGS BEGIN IE NOT, TRY AGAIN 064D, 0A 0900 AST S A YLOE*2

70 Appendiz 9 Appendiz 9 74

064E 85CC
0650 0A
0651 DA
0652 65CC
0654 65CD
0656 A8
0657 A5SD1
0659 9158
065B CA
065C DOA6
065E @B8DO
0660 A5D0
0662 291F
0664 DO9E
0666 A5DO
0668 4A
0669 4A
066A 4A
066B 4A
066G 4A
066D 2903
066F AA

0670 ADOAD2
0673 9DC402
0676 4€0406
0679

Example 4.

72, Appendiz 9

0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1400
1110
1120
1130
1140
1150
1160
1470
1180
1190
1200
1240
1220
1230
1240
1250
1260
1270
1280
1290

10
20
30
40
50
60
65
70
80
90
0100

STA TEMP SAVE IT FOR A FEW MICROSECONDS
ASL A

ASTA YLOC*8

ADC TEMP ADD/IN YLOGC*2

3
5 RESULT IN ACCUMULATOR 1S YLOC*10
; REMEMBER, THERE ARE TEN BYTES PER SCREEN ROW

3

ADC XLOG

]
5 RESULT IS MEMORY LOCATION OF DESIRED PIXEL GROUP
MIARYS
LDA GOLOR GET COLOR BYTE
STA (SAVMSE),Y PUT IT ONTO THE SCREEN
DEX WE SHALL PUT 254 MORE SQUARES
BNE BEGIN ONTO THE SCREEN

; END OF MAIN INNER LOOP
3
DEC PHASE STEP COLOR PHASE FOR EXPLOSION
LDA" PHASE
AND. #$1F EVERY 32 PHASE STERS
BNE' BEGIN WE CHANGE COLOR REGISTERS
; THIS'SECTION USES BITS 5 AND 6 OF PHASE
; TO CHOOSE WHICH COLOR REGISTER TO MODIFVY
3
LDA PHASE
LSR A
LSR A
LSR A
LSR 28\
LSR' Al
AND #3503
TAX

LDA = RANDOM GHOOSE A RANDOM COLOR

STA COLORO,X PUT NEW COLOR INTO COLOR REG.
JMp BEGIN START ALL OVER

-END

S KATHY’S COLOR PALETTE

;s PUTS ALL 128 COLORS ONTO THE SGREEN

; CALL FROM BASIC WITH THE FOLLOWING COMMANDS:

3 GR. 5

5 EORI=0 TO 3: COLOR'I: FOR J=20*I TQ 20*[+19:; PLOT J, 3:
; DRAWTO J, 39: NEXT J: NEXT I

5 A=USR(1536)

5 BASIC IS STILL USABLE

5 EXIT WITH SYSTEM RESET KEY

5

0000
00ee
00CE
00CE
0230
D40E
D40F
D40F
0200
DO1A
D016
DO17
D018
D40A
0600

0601
0604
0606
0609

060B
060D

060F
0611
0612
0614

0616
0617
0618
0819

061 A
0616
061D
061F

0621
0623
0626

68

AD3002
85CC
AD3102
85CD)

AQ07
A9BA

91CC
C8

Co17
DOE9

CH
C8
G8
C8

91 CE
C8

CORB
DOF9

A950
8D0002
A906

0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
0600
0610
G620
0630

)

*= $0600
POINTA = $CC POINTER TO DISPLAY LIST
COLCNT = $CE KEEPS TRACK OF COLOR WE ARE ON
DECK = $CF BIT 0 KEEPS TRACK OF WHICH DECK
DSLSTL = $0230 O. S. DISPLAY LIST ADDRESS
NMIEN = $D40E NON-MASKABLE INTERRUPT ENABLE
NMIRES = $D40F NON-MASKABLE INTERRUPT RESET
NMIST = $D40F NON-MASKABLE INTERRUPT STATUS
VDSLST = $0200 DISPLAY LIST INTERRUPT VECTOR
COLBAK = $BD01A BACKGROUND COLOR REGISTER
COLPFO = $D016 COLOR REGISTER #0
COLPF1 = $D017 COLOR REGISTER #1
COLPF2 = $D018 COLOR REGISTER #2
WSYNC = $D40A WAIT FOR HORIZONTAL SYNG

CLEAN STACK

SETUP PLA
5 SET UP POINTER ON PAGE ZERO
5 d
LDA DSLSTL
STA. POINTA
LDA DSLSTL+1
STA ' POINTA+1

POINT TO 3RD MODE BYTE
NEW MODE BYTE

LDV #$07
LDA #88A

5

; STORE 16 DISPLAY LIST INTERRUPT MODE BYTES

LOOP 1 STA ' (BOINTA), Y

INY
GV =S T
BNE LOOP1

5
3 SKIP FOUR BLAINK LINES

INY

INY

INY

INY
3

5 STORE 16 MORE DISPLAY LIST INTERRUPT MODE BYTES

3

LOOP2 STAS S (POINEAY Y-
INY
CPY = #32B

BNE = LOOPR2
5 SET UP DISPLAY LIST INTERRUPT VECTOR

3

LDA #$50
STA VDSLST
LDA #306

Appendir 9 73

0628

062B
062D
062F
0631
0634
0637
0639
063B
063E
0640
0643

0644
0650
0651
0653
0654
0656
0658

065A
065D
0660
0663
0669
0668
066C

066D
066F
0671
0672
0673
0674
0676
0679
067C
067E
0681
0683
0686
0688
068B
068C

8D102

A900
85CE
85CE
8DOFD4
ADOFD4
2940
FOE9
ADOED4
0980
8DOED4
60

48
ASCE
18
6910
85CE
D13

8DOAD4
8DOADO
8D16D0
8D17D0
EGCE

68

40

£

A5CF
2901

QA

0A

0A

05CE
8DOAD4
8D1ADO
6902
8D16D0
6902
8D17D0
6902
8D18D0
68

40

74 Appendiz 9

0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
10390
1100
1110
1120
1130
1140
1150
1160

WAIT

STA

LDA
STA
STA.
STA
LDA
AND
BEQ
LDA
ORA
STA
RTS

VDSLST +1

#3800

COLCNT INITIALIZE COLOR COUNTER

DECK INITIALIZE DECK COUNTER
NMIRES = RESET INTRPT. STATUS REGISTER
NMIST GET INTERRUPT STATUS REGISTER
#$40 HAS VERTICAL BLANK OCCURRED?
WAIT NO, KEEP CHECKING

NMIEN YES, ENABLE DISPLAY: LIST

#$80

NMIEN THIS ENABLES DLI

ALL DONE

5
; DISPLAY LIST INTERRUPT SERVICE ROUTINE

5

DLISRV

*

PHA
LDA
CLC

ADC
STA
BNE

$0650
COLCNT
#$10

COLCNT
OVER

SAVE ACCUMULATOR
GET CURRENT COLOR

NEXT COLOR
SAVE IT
END OF DECK?

3
; END OF DECK, BLACKEN SCREEN

3

STA
STA
STA
STA
STA:
INC

PLA
RTT

WSYNC
COLBAK
COLPEQ
COLPE1
COLPE2
DECK

WAIT EOR NEXT SCAN LINE
BLACKEN ALL REGISTERS

NEXT DECK
RESTORE ACCUMULATOR
DONE

; PUT OUT NEXT COLOR, WITH FOUR LUMINOSITIES

3
OVER

LDA
AND
ASL
AL
ASL
ORA
STA
STA
ADG
STA
ADC
SEA
ADC
STA:
PIAS
RTT

DECK
#$01

A

A

A
COLCNT
WSYNC
COLBAK
#$502
COLPEQ
#3502
COLPE1L
#$02
COLPE2

UPPER OR LOWER DECK?
MASK OFF RELEVANT BIT
SHIFT INTO HIGH LUMINOSITY

MERGE WITH COLOR NYBBLE
WAIT FOR NEXT SCAN LINE
STORE COLOR

NEXT HIGHER LUMINOSITY
STORE COLOR

NEXT HIGHER LUMINOSITY
STORE COLOR

NEXT HIGHER LUMINOSITY
STORE COLOR

RESTORE ACCUMULATOR
DONE

APPENDIX 10

QUICK REFERENCE:
COMMANDS RECOGNIZED BY
THE ASSEMBLER EDITOR

The following list includes all commands and directives recognized by the Assembler Edito:7 carfridge.

However, not all options, parameters, or defaults are presented. In most cases only the most useful or
interesting version is presented.

EDITOR
NUMxx, yy

RENxX, yy

DELXxX, yy
NEW:

FIND/SOUGHT/xX, yy, A
REP/OLD/NEW/xX, vy, A

LIST #P:

PRINT #P:

ENTER #D; NAME
SAVE #C: X§XX, yyyy

LOAD #C:

ASSEMBLER

provides auto line numbering starting at xx in increments
of yy

renumbers all statements in increments of yy, starting
with xx

deletes statement numbers xx through yy
Wwipes out source program

finds and displays all occurrences of the string SOUGHT
between xx and yy

replaces all occurrences between lines xx and yy of the string
OLD: with the string NEW

lists source program to printer

Printssource program on printer 2.

retrieves source program from diskette

saves data in addresses xxxx through yyyy to cassette

retrieves data from cassette

ASM#D: NAME. SRG, #P:, #D: NAME. OB]

DEBUGGER
DR

CR< ,,x

DXXXX, Yy

retrieves source file called NAME. SRC on diskette, lists
assembly listing to printer, and saves object program to
diskette under filename NAME. OBJ]

displays 6502 registers A, X, ¥, P, and S.
puts an' x into the Y-register.

displays contents of addresses xxxx through yyyy

Reference
Page No.

15

16

15
15

16

17

19
21

21

22

25

36
36

36

Appendiz 10, 75

Cxxxx < yy

MXXXX < VY VY, 2Z2Z

VXXXX < VYV, 2222

Lxxxx
A
Gxxxx

TXXXX

SXXXX

76 Appendir 10

puts yy into address xxxx.

copies memory block yyyy through zzzz into block starting
at Xxxxx.

compares memory block yyyy through zzzz with block
starting at xxxx, displaying mismatches.

disassembles memory starting at address xxxx.
activates mini-assembler (mo labels, one line at a time).
runs object program at Xxxx.

trace; displays 6502 registers while running object program
at address xxxx at readable speed.

single-steps object program at xxxx, displaying registers.

return to EDIT mode

37

38

38

38

40

40

40

41

41

APPENDIX 11

MODIFYING DOS I TO MAKE
BINARY HEADERS COMPATIBLE WITH
ASSEMBLER EDITOR CARTRIDGE

The following assembly language program modifies four memory locations in
DOs I to make binary file headers compatible with the Assembler Editor car-
tridge. There are two headers (each two bytes long)—one for SAVE and one for
LOAD. To change the header bytes from hex 8409 to hex FFEF for full com-
patibility, type the following modification program.

EDIT
10 *=600
20 LDA #$EE
30 STA $2441
40 = STA $2448
50 STA $14BE
60 STA $14C0
70 END

To assemble the modification program, type ASM and press [EEIGNE-

Appendix 11 77

Te run this program, you must be in DEBUG mode so, type the following,.

NOTES:

e Type BUG and press GE{GLD-
® Type G600 and press [EEIEND:

The screen will display:

DOS T will now have header bytes that are fully compatible with the Assembler
Editor cartridge.

Toi change DOS I permanently on your diskette:

1. Run the Modification Program.
2. Type X to get out of BUG.
3. Type DOS to enter DOS. -
4. Type H to write a fully compatible DOS on diskette.
CHANGES AND LOCATIONS

LOCATION PRESENT CONTENTS CHANGE TO
DECIMAL: HEX DECIMAL HEX DECIMAL HEX
9281 2441 182 84 255 ER
9288 2448 9 09 255 FF —LOAD
5311 14BF 132 84 255 EE »
53112} 14CO.) 09 255 EE —SAVE

Instead of using the Modification Program, you could use BASIC to POKE
decimal 255 into memory: locations 9281, 9288, 5314, and 5312. After making
the pokes, type DOS ta display the DOS Menu. Type H to write
the DOS modification onto diskette.

Notes 78
78 Appendix 11 o

Wichtige Informationen

Lieber Computerfreund: lieber Kunde, lieber Handler!

Jeder, der sich einmal selbst damit beschéftigt hat, ein Computerprogramm zu fertigen, wei,
welche Arbeit und geistige Muhe aufgewendet werden muB, um eine Problemlésung zu finden und
sie anwenderfreundlich zu programmieren. Die Erfullung dieser Voraussetzungen erfordert viel
Erfahrung und hohe finanzielle und zeitliche Investitionen. Das Ergebnis sind gute und erfolgreiche
Computerprogramme, die von interessierten Anwendern nachgefragt werden und deshalb fiir den
Héndler verkauflich sind.

Diese Tatsache machen sich einige dadurch zunutze, daB sie die mit hohen Voraufwendungen
geschaffenen erfolgreichen Programme der Firma Atari kopieren oder ihren Kunden die Maglich-
keit anbieten, die gewlinschten Programme auf Diskette zu Uberspielen. Sie meinen, damit ihren
Kunden ein gutes und billiges Angebot zu machen. Die Kunden wissen jedoch meist nicht, daB sie
lediglich ein vermeintlich gutes und billiges Angebot erhalten.

Abgesehen davon, daB das Angebot zur Ubggspielung von Programmen und das Anbieten und
Verkaufen illegal kopierter Programme strafrechtlich verboten ist, weil es sich dabei um Verletzun-
gen des Urheberrechtes (COMPUTERPROGRAMM PIRATERIE) handelt, die von Atari gegentiber

jedermann ohne Ansehen der Person gerichtlich verfolgt wird, so ist auch die Annahme falsch,
das Angebot sei gunstig oder billig:

® Cestohlene Ware ist immer billig. Der Dieb hat keine Voraufwendungen. Er eignet sich nur
fremdes Eigentum an, fur die der Kaufer keine Gewéhrleistung erhalt.

® Der Handler, der das Kopieren von Programmen anbietet, anstatt Originale zu verkaufen
schmarotzt an fremder Leistung.

® Der interessierte Kunde wird bald keine guten Programme mehr kaufen kénnen und illegale
Programme wird der Handel bald auch nicht mehr anbieten kénnen.

Letzteres deswegen, weil niemand mehr bereit und in der Lage sein wird, gute verkaufsfahiqe
Programme zu entwickeln, wenn nicht die Maglichkeit besteht, die hohen Voraufwendungen durch
Verkédufe wieder zu verdienen. Die Piraten sind geistig weder in der Lage noch tiberhaupt bereit,
sich der Mihe zu unterziehen, Programme zu entwickeln. Sie kénnen und wollen nur durch Dieh
stahl fremder guter Leistung eine schnelle bequeme Mark verdienen.

Wer also Interesse daran hat, daB das Angebot an guten Computerprogrammen wachst, sollte die
illegalen, billigen** Angebote meiden und mit dazu beitragen, daB den Totengrabern der Computor
Programmentwicklung und damit des Computerhandels das Handwerk gelegl wird

Wir danken fur |hr Verstéandnis und freuen uns tber jeden Hinweis von lhnen

Atari Elektronikvertriebsges. mbH

ATARI ELEKTRONIK Vertriebsgesellschaft mbH - Bebelallee 10 + 2000 Hamburg 60 + Tel. 040/511 80 91

ATARI

o A Warner Communications Company

ATARI-Elekironik Vertriebsgesellschaft mbH
Postfach 600169 - Bebelallee 10 - 2000 Hamburg 60

Jegdliche Rechte vorbehalten.
Vermietung, Verleih, Vervielféltigung
und éffentliche Auffthrung verboten.

	Assembler Editor - CART - RXG4003.01
	Assembler Editor - CART - RXG4003.02
	Assembler Editor - CART - RXG4003.03
	Assembler Editor - CART - RXG4003.04
	Assembler Editor - CART - RXG4003.05
	Assembler Editor - CART - RXG4003.06
	Assembler Editor - CART - RXG4003.07
	Assembler Editor - CART - RXG4003.08
	Assembler Editor - CART - RXG4003.09
	Assembler Editor - CART - RXG4003.10
	Assembler Editor - CART - RXG4003.11
	Assembler Editor - CART - RXG4003.12
	Assembler Editor - CART - RXG4003.13
	Assembler Editor - CART - RXG4003.14
	Assembler Editor - CART - RXG4003.15
	Assembler Editor - CART - RXG4003.16
	Assembler Editor - CART - RXG4003.17
	Assembler Editor - CART - RXG4003.18
	Assembler Editor - CART - RXG4003.19
	Assembler Editor - CART - RXG4003.20
	Assembler Editor - CART - RXG4003.21
	Assembler Editor - CART - RXG4003.22
	Assembler Editor - CART - RXG4003.23
	Assembler Editor - CART - RXG4003.24
	Assembler Editor - CART - RXG4003.25
	Assembler Editor - CART - RXG4003.26
	Assembler Editor - CART - RXG4003.27
	Assembler Editor - CART - RXG4003.28
	Assembler Editor - CART - RXG4003.29
	Assembler Editor - CART - RXG4003.30
	Assembler Editor - CART - RXG4003.31
	Assembler Editor - CART - RXG4003.32
	Assembler Editor - CART - RXG4003.33
	Assembler Editor - CART - RXG4003.34
	Assembler Editor - CART - RXG4003.35
	Assembler Editor - CART - RXG4003.36
	Assembler Editor - CART - RXG4003.37
	Assembler Editor - CART - RXG4003.38
	Assembler Editor - CART - RXG4003.39
	Assembler Editor - CART - RXG4003.40
	Assembler Editor - CART - RXG4003.41
	Assembler Editor - CART - RXG4003.42
	Assembler Editor - CART - RXG4003.43
	Assembler Editor - CART - RXG4003.44
	Assembler Editor - CART - RXG4003.45
	Assembler Editor - CART - RXG4003.46

